[1ik) 1 1 (N software

Monitoring WebSphere
Application Performance
on z/0S

Monitor and troubleshoot production
performance of WebSphere on z/0S

Introscope, PathWAI, WebSphere
Studio Application Monitor

~ WebSphere on z/0S
performance methodology

Franck Injey
Jerzy Buczak
Budi Darmawan
Simon McNab
Hong Min

ibm.com/redbooks REd h OOkS

International Technical Support Organization

Monitoring WebSphere Application Performance on
z/0S

April 2003

SG24-6825-00

Take Note! Before using this information and the product it supports, be sure to read the
general information in “Notices” on page vii.

First Edition (April 2003)

This edition applies to WebSphere Application Server V4.0.1 for z/OS and OS/390 at Service
Level 4, program number 5655-F31 for use with z/OS Version 1 or OS/390 Version 2 Release 10.
This document created or updated on April 10, 2003.

© Copyright International Business Machines Corporation 2003. All rights reserved.
Note to U.S Government Users — Documentation related to restricted rights — Use, duplication or disclosure
is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Notices vii
Trademarks viii
Preface iX
The team that wrote thisredbook. X
Become a published author Xi
Comments Welcome.o Xii
Part 1. Walking the WebSphere performancepath 1
Chapter 1. WebSphere runtimeonz/0OS 3
1.1 zSeries hardware and z/OS 4
1.1.1 Central Processors and logical partitions 4
1.1.2 Parallel Sysplex® 5
1.1.3 Addressspacesandtasks 5
1.1.4 Z/OS CompPoNEeNtso 6
1.2 The WebSphere programmingmodel 7
1.2.1 Java OvVervIEW e 7
1.2.2 J2EE 8
1.3 Application servermodel. 11
1.8.1 Regionsandinstances 12
1.3.2 Servers and nOdesot 13
1.4 System administrationmodel o 15
1.5 Putting it together: a typical customer installation. 16
1.6 Performance components. 18
1.6.1 The TCP/IP network e i 19
1.6.2 ZSEreS SEIVEI . . o ot e 19
1.6.3 Z/0S .. 19
1.6.4 The application e 23
Chapter 2. WebSphere and z/OS, walking the performance path. 25
2.1 Introduction to performance and terminology 26
2.1.1 Setting your performance expectations. 28
2.1.2 Performance managemento e 29
2.1.3 How to know that you have a performance problem............. 30
2.1.4 What to do about a performance problem. 31
2.2 Workload Managercontrols 33
2.3 Gathering WebSphere performance information. 39
231 SMF reCords oot 39

© Copyright IBM Corp. 2003 All rights reserved. iii

2.3.2 RMF reportso 39

2383 DB2 SMF recordst i et 54
2.3.4 WebSphere SMF records 57
2.3.5 Garbage Collection (GC)trace 67
2.4 Establishingthe diagnosis. i 70
241 OVEIVIBW . . o oot e 70
2.4.2 Initial diagnostiCs.o 72
243 Wheredoesithurt?. i 78
2.4.4 Check formemoryproblem........ 82
245 Thedelaypain. e 83
246 The CPUDpain e 85
Chapter 3. The ITSO test environment 87
3.1 Hardware and software configuration 88
3.1.1 The sysplex configuration.......... 88
3.1.2 Network @CCess.ot e e 92
3.1.3 ITSOtestworkloads i 96
3.1.4 WebSphere Studio Workload Simulator 98
3.2 Examples of performance problems 99
3.3 Performance monitoringtools 101
Part 2. WebSphere performancetools 107
Chapter 4. Introscope. e 109
4.1 INtrOSCOPE . . . ottt e 110
4.1.1 Introscope majorcomponents. 111
4.1.2 Monitoring WebSphereonz/OS 112
4.1.3 Enterprise Manager. 116
4.1.4 Workstation 116
4.1.5 Introscope performance and monitoring methodology 123
4.1.6 ITSO configuration i 123
4.2 Examples. 126
421 Example 4: CICS. e 126
422 Example 6:NoDB2 Index.o i, 129
4.2.3 Example 10: Too Much Logging oot 134
424 Example 3: Memory Leak 136
4.2.5 Example 1: ldentifyBad User 140
4.2.6 Example 7: TransactionHang. 144
4.2.7 Example 8: StaticPages. i 145
4.2.8 Example 10: Increased WebSphere Activity. 148
4.2.9 Example 11: Prioritizing Problems 153
Chapter 5. PathWAI solutions for WebSphere 157
5.1 PathWAIl solutions. 158

iv Monitoring WebSphere Application Performance on z/OS

5.2 OMEGAMON XE performance monitors. 158

5.2.1 OMEGAMON XE architecture. 158
5.2.2 Monitoring WebSphere Application Server. 162
5.2.3 Monitoring the WebSphere environment. 166
5.3 PathWAI configuration at ITSO 170
5.4 Analyzingthe ITSOexamples. 173
5.4.1 Example 1 - Identify a DB2 delay in the application path 173
5.4.2 Example 3 - Detectamemoryleak......................... 181
5.4.3 Example 4 - Identify a CICS TS response time problem. 188
5.4.4 Example 6 - Isolate aDB2 problem 194
5.4.5 Example 7 - Transaction hang ortime-out 200
5.4.6 Example 8 - Staticpagesserving i 207
5.4.7 Example 9 - Increased WebSphere activity 212
5.4.8 Example 10 - Identify a method called with high frequency 217
5.4.9 Example 11 - Detecting multiple concurrent problems 220
Chapter 6. WebSphere Studio Application Monitor 225
6.1 What WebSphere Studio Application Monitoris 226
6.2 How WebSphere Studio Application Monitorworks 228
6.2.1 WebSphere Studio Application Monitor architecture. 228
6.2.2 WebSphere Studio Application Monitor data collection 229
6.2.3 WSAM Application Monitor. 231
6.2.4 WSAM MonitorConsole 233
6.3 Performance methodology i 233
6.4 ITSO configuration e 236
6.5 Runningthe examples. 237
6.5.1 Example 1. 237
6.5.2 Example 3. 243
6.5.3 Example 4. 245
6.5.4 Example 6. 253
6.5.5 Example 7. 260
6.5.6 Example 8. 264
6.5.7 Example 9. 268
6.5.8 Example 10 271
Appendix A. Javaand J2EE details. 279
A1 Javaclassloading. 280
A2 Javaruntime execution. 280
A.3 Java memory and garbage collection. 281
A4 J2EE applicationflow 286
A5 J2EE application structure 288
Appendix B. Configurationfiles................ 291
B.1 HTTP Serverdefinitions 292

Contents v

vi

B.2 z/OS TCP/IP definitions

..................................... 298
Related publications 301
IBM RedbooKs e 301

Other reSOUICESo oottt e e e e e e e e 301
Referenced Web Sites o 302
HowtogetIBM Redbooks 302

IBM Redbooks collections. 302
INdeX e 303

Monitoring WebSphere Application Performance on z/OS

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.

© Copyright IBM Corp. 2003. All rights reserved. vii

Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

eServer™ IBM® PC 300®

z/OS™ IMS™ Redbooks™

Z/VNM™ Language Environment® Redbooks (logo) (@@ ™
zSeries™ Lotus® RACF®

AIX® MQSeries® RMF™

AS/400® MVS™ S/390®

CICS® Notes® WebSphere®

CT™ 0S/390® 1-2-3®

DB2® 0S/400®

@server ™ Parallel Sysplex®

The following terms are trademarks of other companies:

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United
States, other countries, or both.

Candle Management Server, AF/REMOTE, CandleNet Portal, OMEGAMON, Alert Adapter, CMS,
eBusiness at the speed of light are trademarks or registered trademarks of Candle Corporation.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.
UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure
Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.

viii Monitoring WebSphere Application Performance on z/OS

Preface

This IBM Redbook was written for IBM® zSeries™ users, performance analysts,
system administrators and system engineers who need a comprehensive
understanding of IBM WebSphere on z/OS performance management in order to
ensure the successful deployment of e-business applications.

Performance monitoring and system tuning in a production environment is a vast
and complex topic. Hypes and claims of performance and scalability are
confusing and often misleading. This redbook helps you understand WebSphere
Application Server V4.0.1 performance factors, and how you can monitor your
system and application performance, response time, and resource utilization. It
provides practical hints and tips on various real-life factors that influence the
performance of applications in production on WebSphere on z/OS or OS/390®.

The book is divided into two parts:

» Part 1 provides a general introduction to WebSphere runtime and discusses
the key performance factors in a z/OS production environment. Beyond
general recommendations, we describe a performance troubleshooting
approach. Examples are given to explain how to narrow down to the source of
the problem. Interpretation of data and rules of thumb are provided.

» Part 2 expands on performance monitoring products available for WebSphere
on z/OS that will help detect and identify performance problems.

— Candle Corp. PathWAI™ Dashboard for WebSphere Infrastructure
— IBM WebSphere Studio Application Monitor
— Wily Technology Introscope®

For each product, we describe the relevant methodology and show through
typical real-life examples, what to look for in determining where the
performance bottleneck is.

© Copyright IBM Corp. 2003. All rights reserved. ixX

Important: The purpose of this publication is to document performance tools
and techniques. Although it contains many measurement examples, they were
run in a non-controlled environment. Each measurement is only an example to
illustrate a given function or technique; the results shown are not intended to

represent precisely what can be achieved in other environments.

Furthermore, the hardware configuration did not remain constant over the
duration of the project. Comparison of measurement results across different
sets of examples would lead to erroneous conclusions and should not be
attempted.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Poughkeepsie
Center.

Franck Injey is a Project Leader at the International Technical Support
Organization, Poughkeepsie. He has 30 years of experience working on S/390®
hardware and system performance. Before joining the ITSO, Franck was a
Consulting I/T Architect in France.

Jerzy Buczak is a Consulting I/T Specialist working for WebSphere zSeries
Software Services in Research Triangle Park, North Carolina. Prior to that, he
was responsible for 0S/390-based networking at the ITSO in Raleigh, NC, with
eight redbooks to his name. Jerzy holds a degree in mathematics from
Cambridge University, England, and has over 20 years of experience in
mainframe networking.

Budi Darmawan is a Consulting IT Specialist at the International Technical
Support Organization, Austin Center. He writes extensively and teaches IBM
classes worldwide on all areas of systems management and database
administration. Before joining the ITSO three years ago, Budi worked in IBM
Global Services Integrated Technology Services in IBM Indonesia as a Technical
lead and Solution Architect. His areas of expertise include Tivoli solutions,
database administration, business intelligence, and OS/390 administration.

Simon McNab is an I/T Specialist working for IBM Global Services in
Portsmouth, UK. He specializes in WebSphere Application Server for z/OS and
also has experience in WebSphere on AIX® and Linux for zSeries. He has
worked as a Systems Programmer for z/OS, VM/VSE, CICS® and a number of
database products. He holds a degree in Computer Science from Pembroke

X Monitoring WebSphere Application Performance on z/OS

College, Cambridge, in the United Kingdom and has 15 years of mainframe
experience.

Hong Min is a software engineer at the IBM Design Center for e-business on
demand(TM), Poughkeepsie, USA. She has more than five years of experience
in zSeries e-business technical support, customer application design, and
prototyping. She holds an MS degree in Computer Science from Drexel
University, Philadelphia, PA. Her areas of expertise include z/OS, Java, J2EE,
and WebSphere.

Special thanks to Bob St. John of zSeries Performance, IBM Poughkeepsie, for
his extensive and valuable technical support of this project.

Thanks also to the following people for their contributions to this project:

David Bennin, Richard Conway
International Technical Support Organization, Poughkeepsie

Bart Steegmans
International Technical Support Organization, Santa Teresa

Mark Addleman
Wily Technology Inc.

Lindsay Farmer, Peter Kingsley, Girish Kulkarni, Warren Macek, Michael
McDonald, Clyde Richardson, Don Zeunert
Candle Corporation

Robert Lam, Richard Mackler, Arthur Tsang
Cyanea Systems

Nin Lei, Worldwide Strategy and Scalability Center
IBM Poughkeepsie

Dave Cohen, WebSphere for z/OS Development
IBM Poughkeepsie

Arti Kadakia, WebSphere for z/OS Performance
IBM Poughkeepsie

Become a published author

Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience

Preface Xi

with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments

about this or other Redbooks in one of the following ways:

» Use the online Contact us review redbook form found at:
ibm.com/redbooks

» Send your comments in an Internet note to:
redbook@us. ibm.com

» Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYJ Mail Station P099

2455 South Road

Poughkeepsie, NY 12601-5400

xii Monitoring WebSphere Application Performance on z/OS

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

Part 1

Walking the
WebSphere
performance
path

© Copyright IBM Corp. 2003. All rights reserved.

2 Monitoring WebSphere Application Performance on z/OS

WebSphere runtime on z/0OS

In this chapter we describe how the runtime components of WebSphere fit
together and run together in a z/OS sysplex. WebSphere is an extensive
collection of applications, so we confine ourselves to those components
necessary to run (not develop) applications in production. Those same
components are the ones of interest to us in monitoring performance.
We cover the following topics:

» What is z/0S?

» What does a WebSphere application look like?

» How do the WebSphere application servers work under z/OS?

» What does it all look like when it is put together?

» What can affect its performance?

© Copyright IBM Corp. 2003. All rights reserved.

1.1 zSeries hardware and z/OS

We include this brief introduction to z/OS for the benefit of those readers
unfamiliar with the mainframe environment. WebSphere on z/OS is very different
from WebSphere on distributed platforms, and much of that difference is due to
the unique nature of the zSeries architecture.

The zSeries architecture is optimized for a mixed workload. Therefore, you will
find the WebSphere servers sharing their mainframe with databases, transaction
processing, development, batch jobs, and almost everything else. z/OS ensures
that each piece of work is allocated the resources and the priority it needs to fulfill
the installation’s service objectives.

In performance terms, this means that poor response time in WebSphere could
be due to excessive resource usage by another application. And what is more,
this could be “working as designed”. If the business has determined that Web
applications should not have the highest priority, then at peak times WebSphere
transactions could receive poor service. This is not a performance issue, this is a
business issue.

1.1.1 Central Processors and logical partitions

Each physical zSeries server comes with one or more Processing Units (PUs),
some storage, and a Channel Subsystem that communicates with the outside
world. Each PU can perform one of a number of functions depending on the
microcode loaded into it. The PUs that run the operating system are called
Central Processors (CPs). However, there is not a one-to-one mapping between
instances of the operating system and the CPs. Rather, each copy of the
operating system runs in its own logical partition (LPAR). An LPAR has assigned
to it a certain proportion of the total computing power, a certain amount of
storage, and a certain number of channels. Moreover, these proportions can be
dynamically adjusted as the workload changes.

When we talk about work running on a mainframe, we talk in terms of LPARs
because that is how the mainframe is seen by an application: One LPAR = one
system image = one interface between the application and the server. But you
need to remember that one LPAR could be using as many as 16 CPs, or only half
aCP.

Many operating systems, such as z/OS, z/VM™ and Linux run in zSeries LPARs.
In this book we are only concerned with z/OS.

4 Monitoring WebSphere Application Performance on z/OS

1.1.2 Parallel Sysplex®

To achieve high availability for a z/OS application, you need that application to
run in multiple LPARs, ideally distributed between multiple physical servers.
However, if you also want optimum performance, you need to ensure very close
coordination between those LPARs. These two principles give rise to the concept
of the sysplex. A sysplex comprises multiple z/OS LPARs (spread across one or
more physical servers) that have three things in common:

» Shared disk space, containing (at the very least) the files (data sets in z/OS
parlance) that define the way the sysplex LPARs cooperate

» A means of communication, called the cross system coupling facility (XCF),
that allows the sysplex LPARs to keep in touch and up to date with all
interesting events

» A Sysplex Timer that keeps the physical servers’ clocks in synchronization.
The timer is not required if the whole sysplex is in the same physical server,
as there is only one clock.

The coupling facility is a very high-speed shared storage area that can be used
by z/OS instances for holding critical data. Using the coupling facility allows
in-storage data to survive the failure of a z/OS instance, since any other instance
can retrieve the data and continue to process it.

The coupling facility is in fact just another LPAR, running a special operating
system optimized for just the one purpose. Coupling facilities are connected to
z/OS LPARs via high-speed connections. In a production environment there are
usually at least two coupling facilities for redundancy.

A typical customer environment might include several physical zSeries servers,
containing a production sysplex, a development sysplex, and a test sysplex. The
production sysplex might comprise:

» A z/OS LPAR using two CPs in server A
» A z/OS LPAR using three CPs in server B
» A coupling facility in server C

» A z/OS LPAR using one CP in server D

» A coupling facility in server D

The development and test sysplexes would probably have less computing power,
and only one coupling facility each.

1.1.3 Address spaces and tasks

Turning to a single z/OS in a single LPAR, we now take a look at how work gets
run within this environment.

Chapter 1. WebSphere runtime on z/OS 5

When you run a job or start an application under z/OS (for example, a
WebSphere application server), the operating system creates an address space.
This is simply a piece of virtual storage that is assigned to the application for the
duration of its existence, and the application runs within it. Up to 2 Gb of virtual
storage is available for each address space, at least until 64-bit addressing is
implemented. As well as user applications, many of z/OS’s own system tasks run
in their own address spaces.

The address space is the higher of the two layers of work management in z/OS.
The lower unit is the task. The individual task is what gets dispatched by z/OS
when it is ready to do work and has the highest priority of all the ready tasks.
When an address space is started, the application that was invoked is assigned a
task, and can work under the auspices of that task. If it needs to perform multiple
units of work concurrently, it can request z/OS to create new tasks and assign
them to the units of work. For example, if the WebSphere application server is
handling several client requests at the same time, you would expect to see
several tasks running in its address space.

1.1.4 z/OS components

6

Many of the major functions of z/OS run within address spaces rather than within
the supervisory kernel. They have special authority and privileges. As far as
WebSphere performance is concerned, two of the most important z/OS
components are Workload Manager and UNIX System Services.

Workload Manager

One of the most important performance-related components of any z/OS sysplex
is the workload manager (WLM). An instance of it runs on each z/OS LPAR, and
together they build a picture of the workload currently running in the sysplex.

The installation defines to WLM the performance policies (goals) that apply to
various items of work. WLM uses these goals, together with its knowledge of the
running workload, to:

» Manage workload distribution and balancing, which includes scheduling new
address spaces to handle increasing workload
» Distribute resources to competing workloads

UNIX System Services

To ease the portability of applications from other platforms to zSeries, z/OS
includes a component called UNIX System Services (USS). It behaves as an
operating system within an operating system, and provides:

» UNIX APIs
» A hierarchical file system (HFS) similar to that used on UNIX
» A UNIX-like command shell

Monitoring WebSphere Application Performance on z/OS

Applications running under z/OS can make use of the traditional z/OS APIs, or
the UNIX APls, or both.

In UNIX, applications run as processes; each process can comprise multiple
threads. In z/OS, these are generally mapped to address spaces and tasks
(TCBs), respectively.

WebSphere makes extensive use of the USS programming interfaces.

1.2 The WebSphere programming model

WebSphere Application Server Version 4 follows the specifications laid down in
the Java 2 Platform Enterprise Edition (J2EE), Version 1.2. The J2EE V1.2
specification is itself based on the Java language programming platform, and it
defines many aspects of enterprise Java applications including:

» The internal design of enterprise Java applications
» The mechanisms used by the application to communicate to other systems

» The process for deploying code into a server environment

1.2.1 Java overview

Java is an object-oriented programming language developed by Sun
Microsystems Inc. It has the look-and-feel of C++, but is easier to use than C++ .
It includes a comprehensive set of APIs that ranges from desktop GUI to
database access to make a programmer’s life easier. Since Java was introduced
in 1995, it has been used extensively to build simple and complex applications.

Java programming model

In order to understand the J2EE programming model, it is important to
understand the basics of the Java programming model. Java enforces
object-oriented programming. Each type of object is represented by a construct
called class, which has methods and variables. Classes can have subclasses,
and together they build the class hierarchy. Another important piece is Interface,
a device that unrelated objects use to interact with each other. Interfaces only
have methods, which can be implemented differently by different classes. See
A.2, “Java runtime execution” on page 280.

For code clarity and manageability reasons, Java has the concept of a package.
A package groups logically related classes in the same way that a file system
directory groups logically related files. There is no runtime performance impact
with regard to packages.

Chapter 1. WebSphere runtime on z/0S 7

In general, Java class files are packaged into one or more Java Archive (jar) files.
This is a file format that is based on the popular ZIP file format for aggregating
many files into one.

Java runtime execution

Java classes are not stored as object code in the sense that the hardware
understands it. They are stored as bytecode to be interpreted by the Java Virtual
Machine (JVM). Although this uses more runtime resources than traditional
compilation, its great advantage is portability. Although the JVM is always
platform-specific, the classes it runs are platform-independent. JVM also has
Just-In-Time (JIT) compile function, which dynamically compiles bytecode into
execution code to improve performance

But in this book we are not dealing simply with Java applications. We are talking
specifically about z/OS WebSphere applications, which add another degree of
sophistication. And WebSphere adheres to the J2EE standard for developing,
deploying, and running enterprise applications. So what is J2EE?

1.2.2 J2EE

The J2EE specification builds on the Java specification and provides the facilities
intended to make building and managing enterprise applications easier. J2EE
defines three basic elements of any enterprise application: components,
containers and connectors. WebSphere provides a set of logical resources to
increase the performance of the various containers and connectors. See
“Components, containers, and connectors” on page 9 for more information.

J2EE also provides a standard set of services, available through APIs:

» Java Naming and Directory Interface (JNDI), which enables components to
locate objects they require.

» Java DataBase Connectivity (DBC), which lets components manipulate
existing data from relational and other databases.

» Remote Method Invocation - Internet Inter Orb Protocol (RMI-IIOP), which
provides a communication method for components to talk to other
applications

» Java Message Service (JMS) provides a means for applications to exchange
messages asynchronously with (for example) MQ.

» Java Transaction API (JTA) allows applications to manage their own
transactions if the services provided by the container are not to their taste.

» JavaMail provides the ability to send e-mail from within a Java application.
JavaMail includes the JavaBeans Activation Framework (JAF), an API used to
handle the data in e-mail messages.

8 Monitoring WebSphere Application Performance on z/OS

» Java Connector Architecture (JCA) is an emerging standard for connector
access.

Components, containers, and connectors

Components are Java code built by application developers that follow particular
guidelines. J2EE defines many different kinds of components, each intended to
fulfill specific requirements. Examples of components include HTML, servlets,
JSPs and Enterprise Java Beans, and GUI client-like applets.

Containers manage the life cycle of J2EE components, and every J2EE
component is managed by a container. Containers are responsible for creating
and destroying components, pooling components, and dispatching requests from
external sources to the appropriate component. Examples of containers include
the Web container, EJB container, and application client container.

Connectors provide facilities for Java applications to interact with systems
external to WebSphere such as DB2®, CICS, IMS™, etc. Note that the external
systems need not be data stores; the external system could be another
WebSphere server region or a third-party application such as Siebel or legacy
applications. In order to maintain transactional integrity between these external
systems, J2EE defines the Java Transaction APl (JTA).

J2EE components

J2EE defines two server-side application components for e-business
transactions:

» Servlets and JSPs
» Enterprise Java Beans (EJBs)

Servlets and JSPs are managed by the Web container and are responsible for
interpreting HTTP requests and composing responses, normally in the form of
HTML. A JSP is a template for a Web page; it supplies the presentation content
for a page. The code for a JSP looks much more like HTML with Java code
embedded in it. The Web container compiles the JSP into a servlet when it is first
invoked. From an execution standpoint, there is no difference between a JSP and
a servlet.

An EJB is a set of Java classes that defines a piece of the business logic used in
a Web application. Not surprisingly, EJBs are managed by the EJB container.
There are three types of EJBs:

Entity beans

An entity bean implements an object view of an entity stored in the database, or it
can implement an existing enterprise application. There are two types of entity

Chapter 1. WebSphere runtime on z/OS 9

beans: Container-Managed Persistence (CMP), and Bean-Managed Persistence
(BMP).

Session beans

A session bean is a non-persistent object responsible for the business logic of a
particular user transaction. It manages the interactions of entity and other
session beans, accesses resources, and generally performs tasks on behalf of
the client. There are two types of session beans: stateful session beans, which
are dedicated to a client and hold the conversational-state for the client; and
stateless session beans, which does not hold conversational-state and can be
shared among clients.

Message beans

A message-driven bean is an asynchronous message consumer. It is invoked by
the container as a result of the arrival of a JMS message.

Application designers and developers can choose between BMP and CMP when
implementing entity beans. In some cases, BMP beans have to be used due to
the entity it represents, for example, a legacy application. From a performance
point of view, CMP is a good choice because of all the work being done in
WebSphere Application Server to improve CMP performance. BMP can perform
as well if the application developers are performance-conscious and write very
efficient code in the application.

J2EE containers

The Web container is responsible for receiving HTTP requests and dispatching
them to the appropriate JSP or servlet. As described above, there is no execution
difference between JSPs and servlets. The Web container can be configured to
create and initialize servlets either at startup or on demand when the particular
servlet is invoked for the first time. servlets are normally multi-threaded, so the
Web container will only create a single instance of any particular servlet.

The EJB container receives requests from external clients and dispatches them
to the appropriate EJB for service. The protocol used to communicate to the EJB
container can vary depending on the type of service requested. The most
common protocol is RMI, but CORBA IIOP is also used.

The programmer’s view of a J2EE server is shown in Figure 1-1 on page 11.

10 Monitoring WebSphere Application Performance on z/OS

Web Container EJB Container

Beans
J2EE Services l\;\‘

ir -
Request

A‘ Dispatcher

@ RMIIIOP

HTTP Request J2EE Services
Dispatcher

i i

HTTP Q g
Data and

I:I Legacy

Applications

Clients

Figure 1-1 J2EE server structure

In terms of assembly and deployment, a J2EE application is packaged using the
Java Archive (JAR) file format into a file with an ear (Enterprise Archive) file
name extension. An ear file can contain Web components in Web Archive (war)
files, EJB beans in ejb-jar files, dependent library jar files, and the J2EE
deployment descriptor stored with the name META-INF/application.xml in the ear
file. Not all components are necessary, but at least a war or ejb-jar file and the
deployment descriptor should be included.

1.3 Application server model

So now that we have some J2EE applications set up in the correct way, we need
an environment within z/OS that will execute these applications.

Chapter 1. WebSphere runtime on z/0S 11

1.3.1 Regions and instances

12

A J2EE application container, which includes both Web container and EJB
container, runs in a process in UNIX terminology. This translates to an address
space in z/OS language, called the server region. Since we require some
measure of availability and scalability, we create multiple server regions and
manage the distribution of work to them via another address space called the
control region. The combination of a control region and its managed server
regions is called a server instance. Figure 1-2 illustrates this.

Control Region

Server Region Server Region Server Region

RMITIOP

z/OS

Figure 1-2 WebSphere Application server instance

The control region is the end point of the communication (TCP connection) from
the client. Its job is to distribute requests to the server regions. It places the
requests on a WLM queue, from which WLM takes them and gives them to the
server region that it deems best able to meet the performance goal. WLM is also
able to start new server regions if the existing ones are near their capacity limit.

Within each server region (address space), many client requests may be handled
concurrently. Each request runs as a thread in UNIX terminology, or a subtask in
z/OS terminology.

Monitoring WebSphere Application Performance on z/OS

1.3.2 Servers and nodes

Now we have a control region plus a group of server regions. This still does not

constitute high availability. The next stage is to clone the server instances, so that
a number of control regions accept requests from the network, passing them on
to the appropriate server regions within their own domains. The group of server

instances is called a server. It is the entire server that presents itself to the
clients, so that clients perceive a complete collection of control regions and
server regions as a single entity with a single host name.

The server instances may coexist on the same LPAR, but it is common practice
to have a server instance per LPAR, thus utilizing the high availability functions of
the sysplex to provide the optimum service. Figure 1-3 shows the concept.

server.ibm.com

Control
Region

Server
Region

e

Control
Region

Control
Region

]
]

z/0S

Figure 1-3 WebSphere server and server instances

Chapter 1. WebSphere runtime on z/OS

13

A further refinement is to separate different e-business applications across
different servers. Now there are multiple servers in the sysplex, comprised of
multiple server instances running on each LPAR. The whole collection of servers
is called a node. See Figure 1-4 on page 14.

z/0S
Control
server.ibm.com/flight Region
server.ibm.com/miles
Server Server Server
Region Region
Server Instance: Manage Air Miles

Server Instance: Book Flights |

z/0S z/0S
Control Control
Region Region
Server Server
[T ﬂ [WIH [[]

Server Instance: Manage Air Miles Server Instance: Manage Air Miles

Server Instance: Book Flights | Server Instance: Book Flights |

Figure 1-4 Multiple WebSphere servers in a sysplex node

The issues we now face are:
» How to present the same image (host name) to the clients from each server
» How to distinguish between different servers in the sysplex

» How to select the correct server instance if there is a session affinity between
the client and the server—for example, if consecutive HTTP connections are
part of the same transaction and must be handled by the same instance

14 Monitoring WebSphere Application Performance on z/OS

Now we need a sophisticated connection distribution mechanism that can take
account of these things, as well as input from WLM. The recommended method
is described in 1.5, “Putting it together: a typical customer installation” on

page 16.

1.4 System administration model

With such an application server environment, which is potentially very complex,
the need arises for certain support services to assist both applications and
system administrators to accomplish their tasks. These support services run in
another set of address spaces, namely:

» The Management Server acts as the interface between the administrative
client and the WebSphere environment. The administrative client is known as
the Systems Management End User Interface (SMEUI). Like the Application
server, the Management Server consists of a control region and some server
regions. Note that the SMEUI client for z/OS is very different from the
administrative client for the distributed WebSphere platforms.

» The LDAP server acts as a directory for EJBs and servlets.

» The Naming server, also comprising a control region and some server
regions, is used to locate J2EE objects.

» The Interface Repository (IR) servers have been superseded in function by
the Naming servers. However, they are always started automatically by zZOS
WebSphere.

» The WebSphere Daemon starts the Management, Naming, and IR servers,
and helps to locate services delivered by those servers.

Figure 1-5 on page 16 illustrates the setup of a typical set of support servers in a
high-availability sysplex. Each LPAR always contains both a set of application
servers and a set of support servers, but only the support servers are shown for
clarity.

Chapter 1. WebSphere runtime on zZOS 15

Application Servers

Management Clients

z/OS

[IL [
Naming Mgmt IR WAS Naming Mgmt WAS
Server Server Server Daemon Server Server Daemon
z/0S z/0S
I
[
[IOP or LDAP Naming ||| Mgmt WAS
Server Server Daemon

Figure 1-5 WebSphere support servers

All the above servers (except LDAP) communicate with each other using IIOP
over TCP connections. They, too, can be configured for high availability just as
the application servers can. Since their performance is not as interesting as the
performance of the application servers, we concentrate on the application
servers for the remainder of this book.

1.5 Putting it together: a typical customer installation

A WebSphere installation on z/OS can be as clever and as sophisticated as you

like, but it still needs clients, and client access, in order to fulfill its purpose. In
other words, it needs a TCP/IP network and some form of intelligent load

distribution mechanism. The diagram shown in Figure 1-6 on page 17 depicts a
setup that combines high availability with WLM-assisted workload balancing.

16 Monitoring WebSphere Application Performance on z/OS

Server Instance:

Vacations

Server Instance:

Flights

Server Instance:

Server Instance:

Vacations

Server Instance:

Flights

Server Instance:

Server Instance:

Vacations

Server Instance:

Flights

Server Instance:

Sysplex

Air Miles Air Miles Air Miles
z/0S z/0S z/0S
|
HTTP Server HTTP Server
+ WAS Plugin + WAS Plugin

WebSphere
Edge Server

WebSphere
Edge Server

Figure 1-6 Typical WebSphere installation on z/0OS

Here there are several distinct servers running on the z/OS sysplex, all listening
for HTTP connections. The requirements are:

» To distribute incoming connections between the servers, based on WLM
advice

» To check for session affinity, and to override WLM-based distribution if an
affinity exists between a client and a server instance

» To distinguish between separate servers based on the client’s input—usually

a particular URI.

» To ensure high availability

This is accomplished by a combination of the following:

Chapter 1. WebSphere runtime on z/OS

17

» Sysplex Distributor on z/OS, which balances incoming connections among
available server instances based on WLM input. However, it distinguishes
between server instances by port number, not by URI. Also, it does not
provide any affinity between client and server; it cannot recognize when a
client needs to access the same server on consecutive HTTP connections.

» The IBM HTTP servers with the WebSphere plug-in on the outboard servers,
which can check the incoming URI and translate it to a port number. They can
also check cookies to determine if session affinity exists, and if so, bypass
Sysplex Distributor, forwarding requests directly to specific server instances.

» The IBM WebSphere Edge Servers (one primary and one backup), which
distribute incoming connections between the HTTP server instances. They
can also act as caching proxies, relieving the application servers of the
tedious task of serving static pages.

Thus, a client connecting to the IP address of the WebSphere Edge Servers is
assured of service from the correct z/OS server, and of continuing service if any
component on the path fails.

In an environment where Internet access is available to the WebSphere sysplex,
there would also be firewalls in the picture; these have been omitted for simplicity.

Refer to the redbook Enabling High Availability e-Business on zSeries,
SG24-6850, for an in-depth discussion of this configuration.

1.6 Performance components

From the above discussion, you will have concluded that WebSphere Application
Server on z/OS is not the simplest environment in which to perform performance
investigations. There are very many factors that could adversely affect response
times. Some of them can be easily identified by the tools described in this book,
and some of them cannot. In this section we inspect the route taken by a typical
Web transaction to identify the potential performance bottlenecks.

For a detailed and up-to-date list of tuning recommendations, see the latest
edition of WebSphere Application Server V4.0.1 for z/OS and OS/390:
Operations and Administration, SA22-7835. The major points in this section are a
brief summary from Chapter 9 of SA22-7835-05.

This book is frequently updated; the latest version may be found at:

http://www.ibm.com/software/webservers/appserv/zos_o0s390/

18 Monitoring WebSphere Application Performance on z/OS

http://www.ibm.com/software/webservers/appserv/zos_os390/

1.6.1 The TCP/IP network

The network is the first thing a user’s request sees when it leaves the browser. It
is also the least responsive to any tuning done by the installation, since much of it
is outside your control. There are two things you can do to help:

» Good design of the environment immediately outside the sysplex: fast routers,
fast switches, fast adapters (OSA Express), and efficient routing.

» Optimization of the z/OS TCP/IP stack: ensure that TCP buffer sizes are large
enough, that MTU sizes are as large as possible, and that enough sockets are
available for all the connections that need to be handled.

1.6.2 zSeries server

1.6.3 z/OS

The obvious consideration is that WebSphere applications need hardware
resources, memory, and CPU power. Less obvious factors are:

» Java applications use IEEE floating point instructions extensively. Prior to the
9672 G5 servers (predecessors to the zSeries), these instructions were
emulated and performance could be adversely affected.

» If your Web site uses SSL encryption, this too is a heavy user of processing
power. Hardware features available on the zSeries servers give them an
advantage.

As soon as the user’s request hits the zSeries hardware, everything from that
point onwards is under the control of z/OS until the response is sent back.
Recommendations include:

» Turn off all tracing unless absolutely necessary.

» Turn off recording of systems management facility (SMF) records other than
the ones you need. Some of the WebSphere performance tools make use of
SMF, so a measure of SMF recording may be required.

» Put frequently used Language Environment® modules into the link pack area
(LPA).

UNIX System Services

WebSphere is a UNIX System Services (USS) application, meaning that it runs
in the UNIX environment under z/OS. In configuring USS, you tell it how many
processes (address spaces), threads (tasks), sockets, and users it is expected to
handle. WebSphere uses large numbers of these things.

Chapter 1. WebSphere runtime on zZOS 19

20

USS also uses a hierarchical file system (HFS) similar to that implemented on
UNIX and PC platforms. You should ensure that search paths for required files
are optimized. Also, if you are sharing HFS files between LPARs, make as many
files as possible read-only. Writing to shared files incurs a significant overhead.
Also, make sure HFS files are mounted locally when possible.

WorkLoad Manager

WorkLoad Manager (WLM) is responsible for delivering the correct service level
to each application and to each user, as determined by the installation. “Correct”
is defined by the goals that you configure in WLM. Goals are generally of two
kinds:

» Response time
» Velocity, meaning percentage of requested processor time allowed

The trick with WLM is to map a given piece of work to a defined goal.
Recommendations include:

» Classify all regions except the WebSphere server regions as high velocity.

» The server regions should be given a reasonable velocity for starting up and
other work, like garbage collection. The real application work is handled under
the application environment. Classify this with a suitable response time with a
percentile goal.

» In the WLM definition, do not limit the number of server address spaces that
can be started for a subsystem instance in an LPAR. Specify No Limit in the
definition for your application environment. You can place suitable limits on
the number via WebSphere itself.

RRS

Registration services, context services, and resource recovery services (RRS)
are three separate z/OS components, but it is sometimes useful to think of them
as a single function called recoverable resource management services (RRMS),
the z/OS syncpoint manager.

WebSphere for z/OS requires the use of the RRS Attach Facility (RRSAF) of
DB2, which in turn requires that resource recovery services (RRS) be set up.
RRS provides services to authorized resource managers, such as database
programs and communications managers that manage distributed transactional
communications.

The Recovery and Restart Services component uses a two-phase commit to log
transactions so that data can be recovered after a failure. The main
recommendation is:

Monitoring WebSphere Application Performance on z/OS

» Write RRS log records to the Coupling Facility whenever possible. Ensure that
enough storage is available for the RRS structure.

For more information on system level resource recovery in z/OS, refer to z/0S
V1R2.0 MVS Programming: Resource Recovery, SA22-7616.

Security

Security in a WebSphere environment is administered by the Resource Access
Control Facility (RACF®) or one of its equivalent products. Security is costly in
resources, so the principle to adopt is to define only what is necessary.

Enable only those classes (RACF authorization groupings) that you need. In
particular, if you are not using EJB security roles (which define the users that can
invoke individual methods), disable the appropriate facility class.

LDAP

The z/OS LDAP server is used by WebSphere, and runs multiple threads
(subtasks) to service requests. It must be configured with enough threads to
support the workload (one per server region is recommended).

JVM

The Java Virtual Machine interprets (or, as recommended for best performance,
compiles Just In Time) the Java classes. Java spreads its work around in its
storage (the Java Heap) and periodically cleans it up (garbage collection). Too
small a heap size will lead to frequent garbage collection and poor performance.
Recommendations include:

» Monitor the garbage collection cycles and define a sufficient heap size.
» Run with the JIT compiler active.

» Set CLASSPATH (the Java equivalent of a list of concatenated libraries) to
point to the most frequently used classes first, and to omit classes not used.

» Keep up to date with PTFs, since many of them have performance
enhancements.

WebSphere

The structure of the WebSphere server environment itself has many options that
allow you to optimize performance within the available hardware resources. For
example:

» How do you split the applications between servers?
» How many LPARs/instances for each server?

» How many server regions allowed per instance?

Chapter 1. WebSphere runtime on z/0OS 21

» Do you let a server region run multiple threads, or process one transaction at
a time within each server region?

Some general recommendations for WebSphere are:

» Put as much of the code as possible into the LPA, and the rest in the link list.
This will eliminate unnecessary searching of libraries.

» Make sure that enough storage (both real and virtual) is available.
WebSphere is a heavy user of storage.

Containers run and manage the EJBs, JSPs, and servlets. Many of the
properties associated with the containers can be tuned to improve efficiency. In
particular, the behavior of pools of resources can be adjusted in terms of when
pool elements get reused.

Connectors

Similarly, each type of connector has its own unique tuning requirements. Getting
them right can prevent unnecessary data movement, unnecessary translation,
idle resources being unavailable and so on.

Subsystems

The furthest point reached by a Web transaction from the client is usually the
application that supplies the business data via the connector. Often the
application was written long before the advent of J2EE and requires a connector
to make it play in the Web environment. Sometimes you get the up-to-date
solution, for example a DB2 database call made via JDBC. The most common
z/OS applications to be found include:

» DB2 is a relational database that spans many platforms and integrates data
on all of them. In terms of address spaces, threads, communication options
and general complexity, it is almost the equal of WebSphere. Tuning DB2 for
optimum data retrieval is a whole redbook in itself. One recommendation that
is particularly important for WebSphere is to define sufficient DB2 threads;
WebSphere uses a lot of them. It is important to note that, even if WebSphere
applications do not use DB2, the WebSphere configuration data is in a DB2
database.

» Message Queueing (MQ) is a subsystem that manages the transmission of
messages from place to place. Although the concept sounds simple, the
reality is not; you will find MQ running in several address spaces and
communicating with various distributed platforms. Tuning the storing and
forwarding of messages is not a trivial task, although probably easier than
tuning a relational database.

» Customer Information Control System (CICS) is a popular, long-standing
transaction processing system. Simpler in structure than WebSphere or DB2,

22 Monitoring WebSphere Application Performance on z/OS

it nevertheless can occupy a large number of address spaces spread across
a sysplex. As with many subsystems, one of the major tuning options in CICS
is to optimize the method by which transactions are logged.

» Information Management System (IMS) is a more complex, but more robust,
transaction management system than CICS. It also comes with its own
database system, DL/1 (Data Language One).

1.6.4 The application

Last, but not least, comes the actual coding of the Web application. To quote
from the Operations and Administration Guide: “Badly designed or written
application code makes the largest contribution to poor overall performance”.

Traditional z/OS applications were developed by highly paid, highly skilled
specialists, and have been finely tuned over many years. Most of them make
efficient use of system resources and after years of fine-tuning are less likely to
be responsible for performance problems.

With the advent of e-business and Web-based applications, many new Java
applications have been developed in the fastest possible time in order to present
them to the world before competitors can respond. But the cost saved in
development time and effort is reflected elsewhere: expensive consultants to
review and tune the applications, and/or extra hardware to compensate for the
inefficient code.

Nothing comes for free; the installation has to decide where to spend its money:
development, tuning/fixing, or extra hardware resources. This book cannot tell
you which option to take, but it may help you determine whether one of them is
necessary.

Chapter 1. WebSphere runtime on zZOS 23

24 Monitoring WebSphere Application Performance on z/OS

WebSphere and z/0OS,
walking the performance
path

This chapter provides an introduction to performance of WebSphere on z/OS. It
describes the data that can be used to assess the performance and presents a
general methodology for identifying the source of performance problems.

© Copyright IBM Corp. 2003. All rights reserved. 25

2.1 Introduction to performance and terminology

Performance

The performance of a server can be defined as a measure of how well it carries
out a task. For a computer system or application we usually take this to mean
how fast it carries out the task, but it can also include a measure of how many
tasks it can complete in a given time.

Response time

According to the IBM Dictionary of Computing, which cites International
Organization for Standardization Information Technology Vocabulary as the
source:

“The elapsed time between the end of an inquiry or demand on a computer
system and the beginning of a response; for example, the length of the time
between an indication of the end of an inquiry and the display of the first
character of the response at a user terminal.”

A Web user’s view may be different from this. Consider the case where a servlet
or JSP returns an HTML page that includes many GIFs, etc. The user is likely to
view response time as the time between clicking their mouse until the resulting
page is completely rendered in the browser. The previous definition would stop
the response time clock when the first byte of HTML is received by the browser,
not when the page has been completely rendered.

If you use an HTTP Server external to WebSphere to serve your static content, it
may be impossible (or, at least, very difficult) to find a means of measuring
response time in the same manner that a Web user perceives it. You would need
to be able to measure the combined time to serve all the elements of the
generated HTML page. If you use WebSphere to serve your static content, the
servlet/JSP request and each GIF etc. referenced in the HTML would appear as
separate items that have to be combined in some manner to form the complete
response time. Luckily, this is rarely a problem because there are a number of
points in the network and browser where static content will be cached.

RMF™ reports for WebSphere on z/OS measure the time between work being
queued by a Control Region and that piece of work being completed in the
Server Region. We will use this definition of response time in this chapter.

Throughput

This is a measure of the amount of work going through a system in a given time.
Typically this may be measured as the number of transactions per second. As
with response time, our measurement of throughput with WebSphere on z/OS is
measured based on the work completed by the Server Region.

26 Monitoring WebSphere Application Performance on z/OS

Transaction

A strict definition of transaction is “logical unit of work”. When one transfers
money from one account to another, it is to be removed from the first account and
then added to the second. The transaction includes both these processes, and
they must both complete successfully for the transaction to be considered
complete. A mechanism is also required to ensure that if one of the processes
fails, the other is either not attempted or is also undone.

A customer at a browser may consider the complete process of selecting a book,
entering payment and delivery details and then finalizing the purchase as a
single transaction.

WebSphere considers each incoming request as a transaction. Each of the
requests to WebSphere generated by the customer as they go through the
process of buying a book will be treated as a separate transaction. Our
discussion in this chapter uses the term transaction as viewed by z/OS Workload
Manager and reported by RMF.

Hit rate

Often used as a measure of activity on a Web site. A hit is the retrieval of any
single item from a Web server. Hence a Web page with four graphic items will
actually count as five hits: one for the html page and one for each of the graphic
items. Hit rate is the number of hits in a given time. While this does measure all
the interactions between user and browser, it tends to hide the more valuable
measure of the number of pages being accessed.

Page view rate

A more valuable measure than hit rate. This counts complete pages retrieved in a
given time rather than all the individual elements.

Important: The above definitions should be understood when interpreting
WebSphere transaction rate from an RMF workload activity report. For
WebSphere on z/OS, RMF views each request as a transaction, whether itis a
call to a J2EE application or a request to a static page element.

If WebSphere on z/OS is serving static pages, the transaction rate reported by
RMF will in fact be closer to a measure of the hit rate.

If static content is served from another source, for example a WebSphere
Edge server front end, and requests issued to the back-end application server
are mostly for J2EE applications, then the value reported by RMF will be
closer to the resulting Page View rate.

Chapter 2. WebSphere and z/OS, walking the performance path 27

Number of clients and think time

The number of clients is the number of users connected to the Web site.
However, as opposed to legacy applications, there is no direct relation between
the number of clients connected and the load on the Web server. This is due to
the heterogeneous nature of Web applications. In a traditional CICS or IMS
application, users tend to be logged on working almost continuously. In a Web
application, for example when buying a book, there tends to be more browsing
while users evaluate the information that has been returned. This is think time.
While the users are thinking, they are still effectively connected to the site but
they are not driving work in WebSphere (although there may still be a session
object from their previous interaction). Thus, in an application that tends towards
long think time, there may be a large number of concurrent users, also called
clients, but a low transaction rate in WebSphere application server.

Resource

This is any item that can be used in the execution of a transaction. This can be a
physical resource (for example, CPU, memory) or a logical resource (for
example, JDBC connection, a queue in WLM, etc.). When a WebSphere
transaction accesses data in DB2 or CICS, it may also be convenient to refer to
DB2 or CICS as a resource.

For a transaction to complete, it must be able to access all the resources it
requires. For a transaction to perform well, there need to be enough of these
resources available and they need to be available quickly enough. How much is
enough? How quick is quick? There is no hard answer. It depends on your
business requirements.

2.1.1 Setting your performance expectations

How many transactions per second should you expect from a given WebSphere
on z/OS implementation? As any application, WebSphere applications are using
system resources. One has to rely on a number of sources, some of which are
unreliable and unrealistic, when setting your expectations.

These include:
» Monitoring and extrapolation

If you already have a running application, by taking appropriate
measurements on a regular basis you will understand how your application
performs in normal operation. Any deviation from this base line may represent
a performance problem. Be careful when projecting forward from monitored
data. The numbers may not scale in a linear manner, especially if you are
already close to some limit. You need to carefully review logical resources as
well as physical ones (e.g., CPU).

28 Monitoring WebSphere Application Performance on z/OS

Experience

Be careful when generalizing. Different applications may behave in very
different ways. Benchmarks generally only tell you how well the benchmark
environment was prepared, it will not guarantee how your application will
behave in your real-life environment.

Unrelated experience on other environments, systems or subsystems

WebSphere is not CICS. As explained earlier, they tend to serve different
types of users, and you should not expect similar behavior. Although
WebSphere Application server on z/OS is J2EE-compliant, applications will
not necessarily behave in the same way as on WebSphere on distributed
platforms.

Business requirements

Unless backed by data which confirms that these requirements can be metin
your environment, in reality this may be little more than a statement of intent.

Load testing

Using workload simulation tools, such as WebSphere Studio Workload
Simulator, you can evaluate how an application will behave in your
environment as long as you can recreate a testing environment that matches
the projected production environment.

Capacity planning

Although there is very little information published on this topic, your IBM
representative or authorized Business Partner has access to Technical
Support to do pre-sales sizing estimates of your WebSphere Application on
zSeries servers.

2.1.2 Performance management

There are many situations in performance management. Typically, they are

'S

'S

>

>

Performance monitoring - seeing that everything is running smoothly
Performance analysis - getting to the seat of problems
System tuning - ensuring the best usage of resources

Capacity planning - ensuring that you have enough resources

In this document, we address the first two points in a WebSphere environment.

What is a performance problem?

There are many views on what constitutes a performance problem. Most of them
revolve around unacceptably slow response times or high resource usage, which
we can collectively refer to as pain. The need for performance investigation and

Chapter 2. WebSphere and z/OS, walking the performance path 29

analysis is detected by system indicators or users complaining about slow
response.

Ultimately, you will have to decide for yourself whether a given situation is a
problem worth pursuing or not. This decision will be based on your own
experience, knowledge of your system, and sometimes politics. We will simply
assume for the following discussions that you are trying to relieve some sort of
numerically quantifiable pain in your system.

Generally, a performance problem is the result of some workload not getting the
resources it needs to complete in time. Or, less commonly, the resource is
obtained but is not fast enough to provide the desired response time.

A common cause of performance problems is having several address spaces, or
threads (or tasks) compete for the same resource. These could be a hardware
resource or a serially usable software resource.

For this document we assume that there is a potential performance problem
when for an application in the WebSphere Server Region, response time
measured in milliseconds per transaction, or throughput measured in
transactions completed per second, does not meet your expectations.

Most definitions revolve around unacceptably high response times or resource
usage. However, the definition of “unacceptably high” will vary from one
installation to another. On z/OS, the peaks and troughs of other workloads on the
same system image will impact WebSphere and vice versa.

The business may need to prioritize other workloads on the image at some point
in time (for example, year-end batch processing), even though this will be
detrimental to the performance of WebSphere applications.

The tools and techniques in this chapter will help you to identify where your
resources are being consumed and why and where your application is
experiencing delays.

They will not be able to tell you whether or not such answers are applicable to
your situation. Ultimately this is a business decision.

2.1.3 How to know that you have a performance problem
Some indications of slow performance are:
» Complaints from users
» Service level objectives not being met

» Alerts from monitoring tools

30 Monitoring WebSphere Application Performance on z/OS

» Unexpected changes in reported usage
» System resource indicators (for example, paging rates, DASD response)
» Expected throughput on the system not being attained

Most of these indications assume that some degree of monitoring is in place.
Without monitoring, it is impossible to make objective judgements when
comparing current performance to past performance or knowing what is normal
for a given application. It is also impossible to objectively verify a user's complaint
without knowing what is really happening on your system.

2.1.4 What to do about a performance problem

How and if you apply a solution is ultimately dependent on business priorities. If a
proposed solution to a WebSphere performance problem requires taking
resources from another application, a business decision will have to be made to
determine whether or not this is a price worth paying. If the recommended
solution involves extensive application recoding, the cost may not be justifiable if
the application has a short life expectancy.

When considering cost effectiveness, consider the cost of users abandoning your
site because it is too slow. They will take their purchases elsewhere and may
never try your site again. You may never be aware of the business you are losing.

Make sure your performance expectations are realistic

Try to understand what can actually be achieved with your application given your
hardware and software configuration. As discussed in 2.1.1, “Setting your
performance expectations” on page 28, this is actually a difficult question to
answer. The end point of the problem determination process may be to reset your
expectations.

Don’t cause it
Make sure that you follow published performance configuration guidelines.

We recommend that you run on a G5 server or later to avoid Java performance
issues with IEEE floating point. Prior to G5, the IEEE floating point instruction set
had to be emulated in software. From G5 and later, the instruction set is
implemented in hardware. SDK1.3, which is required for WebSphere Application
Server V4.0.1, makes more use of this instruction set than previous versions, so
the impact will be more noticeable than before.

We recommend that you run with at least 512 MB of real storage. For more
complex applications, you may need 1 GB or more of real storage. The definition

Chapter 2. WebSphere and z/OS, walking the performance path 31

of “more complex” is rather vague, so it may be best to plan for 2 GB from the
outset.

WebSphere 4.0.1 tuning recommendations can be found in chapters 9 - 10 of
WebSphere Application Server V4.0.1 for z/0S and 0S/390: Operations and
Administration, SA22-7835. This manual is often updated, so you should check
for availability of the latest version at:

http://www.ibm.com/software/webservers/appsrv/zos_0s390/1ibrary.html

Check the IBM HTTP server recommendations. If you are performance
conscious, you are probably using the HTTP Transport Handler running in the
WebSphere control region. However, if you are also using the IBM HTTP Server,
you should also check installation recommendations at:

http://www.ibm.com/software/webservers/httpservers/doc/v51/2tabcont.htm

Check for WebSphere performance information in APARs. The latest information
can be found at:

http://www.ibm.com/support/docview.wss?rs=404&conext=SS6LRK&u1d=swg21063537

e-business is a fast-moving world. Consequently there is a seemingly
never-ending supply of maintenance. Keeping current with maintenance is more
important than for more traditional workloads and will often bring improved
performance.

A significant update to the WebSphere product code, maintenance level
W401400, was made available in September 2002. As well as a general
maintenance roll-up, this introduced a number of new features that aid
performance. We highly recommend installing this maintenance level.

Fix it, if you can

Generally, a performance problem is the result of some workload not getting the
physical or logical resources it needs to complete in a timely manner, so the
solution is to make more resources available.

If the solution involves making more hardware resource available to the
application, you can do this by:
» Buying more

If there is no other means of making your application performance meet your
expectations, add more resources. At times this may also be more cost
effective than recoding a badly-written application. Beware of induced costs.

» Stealing it

Take it from a less important application. Here the price to pay is a lower
service to the application from which the resources are stolen.

32 Monitoring WebSphere Application Performance on z/OS

http://www.ibm.com/software/webservers/appsrv/zos_os390/library.html
http://www.ibm.com/software/webservers/httpservers/doc/v51/2tabcont.htm
http://www.ibm.com/support/docview.wss?rs=404&conext=SS6LRK&uid=swg21063537

» Using less, for example:

— Fix badly written code.
— Revise poorly performing SQL queries or add appropriate indexes to
improve fetches from databases.

The cost here is development people. While the cost may be higher, it may be
less visible than buying new hardware.

Live with it

If none of the above options are technically or financially possible, it will be
necessary to change your expectations. At least you will know why the
performance is not meeting your previous expectations. Your users may be
disappointed by the answer, but at least you will be able to give them facts and
convince them that the situation is understood and under control. Changing the
perception may be an important factor in user satisfaction.

2.2 Workload Manager controls

WebSphere Application Server V.4.0.1 for z/OS uses the Workload Manager
(WLM) to manage the number and performance of application server regions in
z/OS (see Figure 2-1 on page 34):

» For each server defined to WebSphere, an Application Environment must be
defined in the WLM panels, which provides the mechanism for WLM to
manage the number of server regions (address spaces) within which
WebSphere applications can run.

» The response time and throughput of WebSphere transactions are managed
based on their assigned service class, associated performance objectives,
and availability of system resources.

See Chapter 9 in WebSphere Application Server V4.0.1 for z/0S and 0S/390:
Operations and Administration, SA22-7835, for more detalils.

Managing the number of application server regions

Each WebSphere application server can have one or multiple server regions per
server instance based upon the settings defined in the WLM application
environment.

Chapter 2. WebSphere and z/OS, walking the performance path 33

WebSphere Server Instance
WLM queues
Server
Control)
o e e
B enclave
xxxSRVC
P
Server
Work —l_l- enclave
Requests —
—
DEFLT Server
—I_I-— Region
enclave
current.env <
MIN_SRS=2
MAX_SRS=6
BBOC_HTTP_TRANSACTION_CLASS=DEFLT
BBOC_HTTPALL_TCLASS_FILE =ITSOTransDefinition.file
o—>
ITSOTransDefinition.file WLM Policy
TransClassMap edgeplex.itso.ibm.com:* /webap1/myserviet WASHI
TransClassMap wtsc48oe.itso.ibm.com:* /webap2/* WASHI o—=>
TransClassMap * /myservlet WASLO

Figure 2-1 WebSphere runtime and Workload Manager

How many server regions are created depends on WLM determination of how
the work is meeting its performance goals, the importance of the work compared
to other work in the system, the availability of system resources needed to satisfy
those objectives, and a determination by WLM whether starting more address
spaces will help achieve the objectives.

By default, the minimum number of regions for J2EE servers is one; there is no
default maximum. You can override the maximum and minimum number of server
regions that WLM will start with two parameters in the current.env file managed

by the SMEUI. For each server, you can specify MIN_SRS and MAX_SRS to set

boundaries on how many server regions WLM will start.

» MIN_SRS is used to start up a basic number of server regions before the day's
work arrives. This can save time in waiting for WLM to determine that more
server regions are needed.

34 Monitoring WebSphere Application Performance on z/OS

» MAX_SRS is useful to cap the number of address spaces started by WLM if you
determine that excessive server regions could contribute to service
degradation.

Beyond this APPLENV use, MIN_SRS and MAX_SRS also have an influence on the
dispatching of transactions managed by WLM.

Transactions received by the WebSphere server control region are passed to
server regions through a set of WLM queues. The number of queues is
determined by the number of service classes defined, and one server region only
serves one service class at a given time. To ensure that you do not limit the
parallelism of execution under full load, MAX_SRS should be set at least as large as
the number of service classes defined.

If you specify MAX_SRS too low, there will be less servers available than WLM
queues. The result may be a queue bottleneck under full load conditions, since
workload manager may be restricted from starting enough server regions to
handle the workload. As a consequence, the system may experience queuing
delays in the WLM queues resulting in transactions getting elongated response
time.

For a detailed discussion on WLM and MAX_SRS, see document number
TD100887 on the Technical Sales Library Web site at:

http://www-1.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TD100887

Managing the performance of WebSphere transactions
Server region enclave classification

This WLM classification is used for WebSphere applications that run in the server
region as part of the dispatched enclave.

Each WebSphere transaction is dispatched as a WLM enclave and is managed
within the server region according to the service class assigned according to the
CB service classification rules.

The classification can be based on the following classification criteria (see
Figure 2-2 on page 36):

Server name

Server instance name

User ID assigned to the transaction
Transaction class

vVvyyy

Chapter 2. WebSphere and z/OS, walking the performance path 35

http://www-1.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TD100887

Subsystem-Type Xref Notes® Options Help

Modify Rules for the Subsystem Type Row 1 to 10 of 10

Command ===> SCROLL ===> PAGE
Subsystem Type . : CB Fold qualifier names? Y (Y or N)
Description . . . WebSphere App Server
Action codes: A=After C=Copy M=Move I=Insert rule
B=Before D=Delete row R=Repeat IS=Insert Sub-rule
More ===>
-------- Qualifier-------- -=-----Class--=-=----
Action Type Name Start Service Report
DEFAULTS: WASDF O0THER
1 CN FMISRV* WASE
1 CN FMESRV* WASE
1 CN OMESRV* WASLO WASE
1 CN OMTSRV* WASLO WASE
1 CN INTSRV* WASLO WASE
1 CN INESRV* WASLO WASE
1 7N WASLO . WASLO WASE
1 1IN WASDF _ WASDF WASE
1 TN WASHI WASHI WASE

B R R R R T R R T R R R R R R R BOTTOM OF DATA ****kkkkkkkkkkkhkhrkhkhkkhrrk

Fl=Help F2=Split F3=Exit F4=Return F7=Up F8=Down F9=Swap
F10=Left F11=Right F12=Cancel

Figure 2-2 WLM definitions of the server regions, CB subsystem

You can assign a default transaction class for the server or server instance on the
environmental variables BBOC_HTTP_TRANSACTION CLASS or
BBOC_HTTPS_TRANSACTION CLASS.

You can further use the virtual host name, port number, or URI template to map
the HTTP request to a transaction class with a filtering file specified in the
BBOC_HTTPALL_TCLASS_FILE variable. Here is an example:

TransClassMap haplexl.itso.ibm.com:* /webapl/myserviet WASDF
TransClassMap haplexl.itso.ibm.com:7080 * WASHI
TransClassMap *:7070* /trade/* WASDF
TransClassMap * /eITS0/* WASDF

36 Monitoring WebSphere Application Performance on z/OS

Modify a Service Class Row 1 to 2 of 2
Command ===>

Service Class Name : WASHI

Description LSA510 WAS 200MS RT
Workload Name WAS (name or ?)
Base Resource Group (name or ?)
Cpu Critical NO (YES or NO)

Specify BASE GOAL information. Action Codes: I=Insert new period,
E=Edit period, D=Delete period.

---Period--- —---mmmmmmememee e T N et
Action # Duration Imp. Description

_ 1 1 90% complete within 00:00:00.200

EEEE R R R R R R R R R R T R R s R s R Bottom of data B R R R R R R R R R R

Fl=Help F2=Split F3=Exit F4=Return F7=Up F8=Down
F9=Swap F10=Menu Bar F12=Cancel

Figure 2-3 WLM definition, CB Service Class

It is recommended that you define WebSphere transaction service classes using
a percentage response time objective, as illustrated in Figure 2-3.

» It is the technical indication to WLM of your requirement. A response time
objective is usually consistent with the business requirement of a Web
application. The response time value may be adjusted depending on the type
of application.

» This option automatically generates response time distribution information
that is reported through an RMF report (see “Response time distribution” on
page 52). You will find this option useful later on, when having to troubleshoot
response time issues.

Server region address space classification

In addition, we recommend that you define a report class for the server address
space activity. This will allow you to monitor the activity run within the server
region for service tasks such as garbage collection. This WLM classification is
used for tasks that run in the server region under control of the step task and not
as part of the enclave.

Classify the WebSphere Application server regions with a service goal high
enough so that they can effectively compete with other workloads and be given

Chapter 2. WebSphere and z/OS, walking the performance path 37

control quickly when WLM determines they are needed, but use an importance
and velocity lower than the enclave classification (Figure 2-4). Again, we
recommend to define a reporting class in order to isolate the activity into a
specific workload report.

Subsystem-Type Xref Notes Options Help
Modify Rules for the Subsystem Type Row 1 to 16 of 61
Command ===> SCROLL ===> PAGE
Subsystem Type . : STC Fold qualifier names? Y (Y or N)
Description . . . Use Modify to enter YOUR rules
Action codes: A=After C=Copy M=Move I=Insert rule
B=Before D=Delete row R=Repeat IS=Insert Sub-rule
More ===>
-------- Qualifier-------- -------Class--------
Action Type Name Start Service Report
DEFAULTS: SYSSTC OTHER
1 T HWS710* IMSCTL WASI
I FMESRVS* VEL80 WASS
I FMISRVS* VEL80 WASS
1 T INESRVS* VEL80 WASS
1 T WSESRVS* VEL80 WASS
1 T OMESRVS* VEL80 WASS
1 7N HAQ* . WAS
1 7 FMESRV* VEL85 WAS
1 ™ INESRV* VEL85 WAS
1 ™ OMESRV* VEL85 WAS
Fl=Help F2=Split F3=Exit F4=Return F7=Up F8=Down F9=Swap
F10=Left F11=Right F12=Cancel

Figure 2-4 WLM definition of the server regions, STC subsystem

Control region classification

There is a certain amount of processing in the WebSphere application control
regions to receive work into the system, manage the HTTP Transport Handler,
classify the work, etc. Therefore, control regions should also be classified in
SYSSTC or a high velocity goal.

38 Monitoring WebSphere Application Performance on z/OS

2.3 Gathering WebSphere performance information

2.3.1 SMF records

Performance information

System Management Facility (SMF) is a good source of information for system
and subsystem performance data. It can record information from most system
components, including HTTP and WebSphere Application Servers.

For performance analysis, and depending on your software environment, the
following SMF records provide useful information:

Record type 70-79 RMF records. Especially record type 70 for processor
activity and type 72 for workload activity.

Record type 88 System logger activity.

Record type 92 USS HFS information

Record type 103 HTTP Server information

Record type 100-102 DB2 statistics, accounting, performance.

Record type 110 CICS TS Statistics

Record type 115, 116 WebSphere MQ Statistics.

Record type 118, 119 TCP/IP Statistics.

Record type 120 WebSphere Application Server information. The SMEUI
allows to switch recording ON/OFF selectively for activity
records or interval records.

Refer to the documentation for each subsystem for more information on the use
of SMF records for DB2, CICS, WebSphere MQ, or TCP/IP.

2.3.2 RMF reports

This section summarizes a step-by-step approach to identify where to obtain
useful information, using standard RMF reports and simple arithmetic. RMF
reports do not give application information, but they can be used to obtain system
and workload characteristics.

To simplify the monitoring, we logically grouped the WebSphere activity into
predefined report classes:

» WAS for WebSphere infrastructure, control region, SM, naming servers

» WASS for server regions

» WASE for e-business workloads running in the server regions in enclaves
» WASC for CICS server called upon by WebSphere transactions

» WASD for DB2

Chapter 2. WebSphere and z/OS, walking the performance path 39

» OTHER for other activity not directly related to our WebSphere environment.
Since our exercise was to illustrate a production environment as opposed to a
lab “controlled” environment, this was done to isolate started tasks, systems
management tasks, TSO users, etc., that were concurrently active on the
sysplex.

Although RMF provides a graphic user interface with RMF PM Java edition, we
chose to illustrate our approach using the traditional RMF post processor. One
reason is that the post processor is easier to document in a generalized way
since it uses predefined formats, whereas RMF PM provides GUI-customized
views that tend to vary with each installation.

There are two useful types of RMF reports:

» Summary and CPU reports, which give system-wide information

» Workload activity reports, which provide information on workloads

The first thing you probably want to do before you go deep into WebSphere
application tuning is to quantify as precisely as possible where z/OS resources
are currently used. If you identify an imbalance or a resource constraint at the
system level, you probably want to correct it first. There is little chance that you

can fix a WebSphere application problem if the system is not reasonably well
tuned.

Most of the information on resource utilization can be quickly obtained from RMF

reports.

CPU The partition data report gives the logical partition view.
The summary report and CPU report show the z/0S
system view, while the workload report provides a
breakdown by workload type.

Storage The summary and CPU reports, show the z/OS system
view. The workload report provides storage allocation
information by workload type.

I/O Activity The summary report, CPU report, and 10Q report shows

system level indicators. The workload report provides
information by workload type.

If a problem is suspected from these high-level reports, additional resource
reports such as channel, 10 activity, paging, virtual storage reports, can be
further investigated.

40 Monitoring WebSphere Application Performance on z/OS

Measurements

Two points should be considered. One is the influence of the measurement tool
on the measured environment, the other is the choice of the measurement
period.

Some of the data reported by RMF comes from event counters. But much of the
data in the RMF paging, virtual storage, CPU or I/O queuing, reports is
statistically sampled. Because, according to statistical theory, the accuracy of
sampled data increases with the number of samples taken of random events, you
would expect to observe more precise results with decreased CYCLE time (for a
fixed INTERVAL value), or with increased INTERVAL length (for a fixed CYCLE
value).

However, pure statistical predictions are not always applicable to a software
measurement tool because the assumptions on which they are based (unbiased
random independent samples and an infinite population) might not hold in an
operating environment. Bias might occur because the tool samples internal
indications of external system events.

The independence assumption becomes less and less realistic as CYCLE gets
very small. As CYCLE gets smaller, each sample is more likely to find the system
performing the same functions as in the previous sample; therefore, the new
sample adds little additional information. The use of a smaller CYCLE value
(while holding INTERVAL constant) should not be detrimental to accuracy, but
any increase in accuracy might be of questionable benefit when compared with
the system overhead that is introduced.

In our measurements, which were run on a 2064 (either model 2C7 or 1C8; the
configuration changed during the project) we used a cycle time of one second
and the measurement interval was set to 5 minutes. That translates into 300
samples per measurement interval.

Although it is not expected that one would keep a 5-minute interval in a real
production environment, it is recommended not to set the measurement interval
too high when running in troubleshooting mode. A good compromise may be 15
or 20 minutes (a 15-minute interval using a one-second cycle would lead to 900
measurement samples per interval). Although extending the interval beyond 30
minutes is possible, it will average the results in such a way that many short
peaks may no longer be visible in the reports.

The second decision point relates to the choice of the measurement analysis
period.

Chapter 2. WebSphere and z/OS, walking the performance path 41

Transaction per second

0 2 4 6 8 10 12 14 16 18 20 22

Time of day

Figure 2-5 A typical daily activity profile

The graph in Figure 2-5 illustrates a daily activity profile, but the same reasoning
would apply to a weekly or monthly profile. What one needs to determine is what
is a representative period. Note that this not a technical-only decision; some
knowledge of the business background is usually required to determine which
part of the application activity cycle is meaningful to the performance analysis.

Running the RMF post processor
The JCL used to produce the RMF reports is shown in Example 2-1.

Example 2-1 JCL for running the post processor

//RMFRPT52 JOB (999,P0OK), 'FRANCK',CLASS=A,REGION=4096K,

// MSGCLASS=T,TIME=90,MSGLEVEL=(1,1),NOTIFY=&SYSUID
//RMFSORT EXEC PGM=SORT,REGION=0M

[xFwxRns SORTIN DATA SETS FOLLOWING HERE s ook ek etk ook ko ok
//SORTIN DD DISP=SHR,

// DSN=FRANCK.SMF.D06T1700

//SORTOUT DD DISP=(NEW,PASS),DSN=8&SORTOUT,UNIT=SYSALLDA,
// SPACE=(CYL, (50,50)) ,DCB=*.RMFSORT.SORTIN
//SORTWKO1 DD DISP=(NEW,DELETE),

// DSN=&&WK1,UNIT=SYSALLDA,SPACE=(CYL, (50,50))
//SORTWKO2 DD DISP=(NEW,DELETE),

// DSN=&&WK2 ,UNIT=SYSALLDA, SPACE=(CYL, (50,50))

//SORTWKO3 DD DISP=(NEW,DELETE) ,DSN=88&WK3,

42 Monitoring WebSphere Application Performance on z/OS

/] UNIT=SYSALLDA, SPACE=(CYL, (50,50))
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSIN DD *
SORT FIELDS=(11,4,CH,A,7,4,CH,A),EQUALS
MODS E15=(ERBPPSRT,500),E35=(ERBPPSRT,500)
//POST1 EXEC PGM=ERBRMFPP
//MFPINPUT DD DSN=*.RMFSORT.SORTOUT,DISP=(0LD,PASS)
//* REPORTS (CHAN)
//* REPORTS (ENQ)
//* REPORTS (I0Q)
//* REPORTS (PAGING)
//* REPORTS (DEVICE(DASD))
//* REPORTS (OMVS,HFS)
/1*
//SYSIN DD *
RTOD (0000, 2400)
STOD(0000,2400)
REPORTS (CPU)
SUMMARY (INT)
SYSOUT(T)
//POST2 EXEC PGM=ERBRMFPP
//MFPINPUT DD DSN=*.RMFSORT.SORTOUT,DISP=(0LD,PASS)
//* SYSRPTS (WLMGL(POLICY (FRANCK.LSM301_1)))
/1*
//SYSIN DD *
RTOD (0000,2400)
STOD(0000,2400)
SUMMARY (INT)
SYSRPTS (WLMGL (RCLASS (WAS*,0THER,SYS*)))
SYSRPTS (WLMGL (POLICY,SCPER(WAS*)))
SYSOUT(T)

Partition Data Report

The RMF Partition Data Report is imbedded as part of the CPU Activity Report
when the server is running in LPAR mode. To access the report information for all
partitions you need to be authorized; this is done from the zSeries server
Hardware Management Console (HMC) by enabling the Global Performance
Management Control setting in the partition activation profile.

The Partition Data Report section contains header information, partition data,
logical partition processor data, and average processor utilization percentages.

Chapter 2. WebSphere and z/OS, walking the performance path 43

PARTITION DATA REPORT

z/0S V1R3 SYSTEM ID SC48 DATE 11/17/2002 INTERVAL 05.00.509
RPT VERSION V1R2 RMF TIME 16.54.59

MVS PARTITION NAME
71

IMAGE CAPACITY

NUMBER OF CONFIGURED PARTITIONS 15
NUMBER OF PHYSICAL PROCESSORS 13

cp 7

ICF 6
WAIT COMPLETION NO
DISPATCH INTERVAL DYNAMIC
--------- PARTITION DATA -- -- AVERAGE PROCESSOR UTILIZATION PERCENTAGES --

----MSU-- LOGICAL PROCESSORS --- PHYSICAL PROCESSORS ---
NAME S WGT DEF EFFECTIVE TOTAL LPAR MGMT EFFECTIVE TOTAL
Al A 180 45 4.65 5.05 0.11 1.33 1.44
A2 A 10 30 4.52 4.91 0.11 1.29 1.40
A3 A 180 0 4.52 4.92 0.11 1.29 1.41
vt A 10 0 0.78 0.92 0.04 0.22 0.26
As A 10 45 4.12 4.52 0.11 1.18 1.29
26 A 10 0 10.19 10.59 0.12 2.91 3.03
A7 A 10 45 4.52 4.97 0.13 1.29 1.42
A8 A 10 0 3.99 4.38 0.11 1.14 1.25
A9 A 10 0 3.60 3.99 0.11 1.03 1.14
A10 A 10 0 3.31 3.71 0.11 0.95 1.06
A1l A 180 0 89.93 0.07 25.69
A12 A 10 50 0.91 1,04 0.04 0.26 0.30
PHYSICAL 4.19 4.19

TOTAL 5.36 38.58

Figure 2-6 Partition Data Report (partial view)

From the example shown in Figure 2-6, we can quickly see that:

» The running partition is A11.

» Itis using 90.16% of its logical CPs, which translates into 25.76% of the
server CP capacity.

» The zSeries server CPs are only used for 43.95% of the time.

The Physical Management Time reported by RMF, in the *PHYSICAL* line,
indicates the amount of processor time required by LPAR to manage all active
logical partitions. The partition named PHYSICAL does not exist, the line is
created by RMF for reporting purposes.

44 Monitoring WebSphere Application Performance on z/OS

z/0S V1R3 SYSTEM ID SC48 DATE 11/17/2002
RPT VERSION V1R2 RMF TIME 16.54.59
MVS PARTITION NAME
IMAGE CAPACITY 71
NUMBER OF CONFIGURED PARTITIONS 15
NUMBER OF PHYSICAL PROCESSORS 13
cp -
ICF 6
WAIT COMPLETION NO
DISPATCH INTERVAL DYNAMIC
--------- PARTITION DATA ----------------- -- LOGICAL PARTITION PROCESSOR
----MSU---- -CAPPING-- PROCESSOR- ----DISPATCH TIME
NAME S WGT DEF ACT DEF WLM$ NUM TYPE EFFECTIVE
Al A 180 45 4 NO 0.0 2 cp 00.00.27.930
A2 A 10 30 4 NO 0.0 2 cp 00.00.27.137
a3 A 180 0 4 NO 0.0 2 cp 00.00.27.192
V! A 10 30 1 NO 0.0 2 cp 00.00.04.705
AS A 10 45 4 NO 0.0 2 P 00.00.24.785
A6 A 10 0 9 NO 0.0 2 cp 00.01.01.222
A7 A 10 45 4 NO 0.0 2 cp 00.00.27.174
A8 A 10 0 4 NO 0.0 2 cp 00.00.23.989
A9 A 10 0 3 NO 0.0 2 cp 00.00.21.648
A10 A 10 0 3 NO 0.0 2 cCp 00.00.19.890
All A 180 0 77 NO 0.0 2 Cp 00.09.00.486
Al2 A 10 50 1 NO 0.0 2 Cp 00.00.05.489
PHYSICAL

TOTAL 00.13.31.653
c1 A DED 0 86 0.0 2 ICF 00.10.00.977
c2 A DED 0 86 0.0 2 ICF 00.10.00.774
c3 A DED 0 86 0.0 2 ICF 00.10.00.644
PHYSICAL

Figure 2-7 Partition Data report and processing weights (partial view)

The logical partition Dispatch Time Effective indicated for each configured

partition, as shown on Figure 2-7, is the sum of the zZ/OS captured time and the
z/0OS uncaptured time. The Partition LPAR Management Time is not a collected
value, but is calculated by subtracting DISPATCH TIME DATA EFFECTIVE from the

DISPATCH TIME DATA TOTAL.

Note that the flexibility brought by logical partitioning adds an additional level of
complexity to the performance analysis: unless the logical partition is “capped”,

the amount of CPU processing power that the partition can use can vary.

» The minimum CPU the logical partition is entitled to is determined by the
processing weights set as part of the partitioning definition.

Min LP CP share = Your LP weights / sum of all LP weights

Chapter 2. WebSphere and z/OS, walking the performance path

45

This will occur when other partitions require their full share of CP resource. In
Figure 2-7 on page 45, which illustrates our test configuration, the sum of all
WGT is 630, while our LP, A11 as indicated, has a processing weight of 180.

The guaranteed CP share is 180/630 = 28.57% of the shared CPs.

» The maximum CPU the logical partition can use is fixed by ratio of the number
of CPs defined in the partition to the total number of available CPs in the
shared pool.

Max LP CP share = number of CPs / sum of shared CPs

This occurs when other partitions do not need their full share of CPU
resource. Looking again at Figure 2-7 on page 45, there are 7 shared CPs
available while our LP (A11) has 2 CPs defined.

The maximum usable CPU share is 2/7 = 28.57% of the shared CPs.

In this example, we were able to align both the minimum and maximum values
in order to simplify our tests, but in a real production environment this may not
always be possible, nor desirable.

In addition, if the partition is part of an LPAR cluster, Workload Manager can
dynamically adjust the number of logical processors and the weight of a logical
partition. This allows the system to distribute the CPU resource in an LPAR
cluster to partitions where the CPU demand is high (an LPAR cluster is defined
as the set of logical partitions in a single server that belong to the same parallel
sysplex).

Since the processing weights can be dynamically adjusted, either by operations
personnel or by LPAR cluster management, remember to check their settings
before you start a time-consuming workload analysis.

Note: All percentages indicated in the Partition Data Report are relative to the
RMF time interval. As such, they accurately show the amount of time physical
CPs were dispatched on behalf of LPAR or of a logical partition. However,
these time-based figures do not take into account all processor costs of
operating in LPAR mode and do not reflect the resulting processor power
expressed in the Large System Performance Reference (LSPR) ITRs or MIPS.

The LPAR Capacity Estimator (LPARCE) tool should be run to estimate the
impact of the logical partition configuration on the processing power. Consult
your IBM support representative to obtain an LPARCE review for your
configuration.

Summary Report

This report provides a summary view of the entire systems activity over multiple
measurement intervals (Figure 2-8).

46 Monitoring WebSphere Application Performance on z/OS

» CPU Busy
» DASD rate, that is, disk 1/0 activity per second
» Swap rate and demand paging
RMF SUMMARY REPORT
PAGE 001
z/0S V1IR3 SYSTEM ID SC48 START 11/17/2002-16.24.59 INTERVAL 00.04.59

RPT VERSION V1R2 RMF END 11/17/2002-17.00.00 CYCLE 1.000 SECONDS

NUMBER OF INTERVALS 7
DATE TIME INT CPU DASD DASD JOB JOB TSO TSO STC STC ASCH ASCH OMVS OMVS SWAP DEMAND
MM/DD HH.MM.SS MM.SS BUSY RESP RATE MAX AVE MAX AVE MAX AVE MAX AVE MAX AVE RATE PAGING

11/17 16.24.59 05.00 64.2 2 264.2 0 0 2 2 110 109 0 0 6 5 0.00 0.20
11/17 16.30.00 05.00 6.6 8 19.8 0 0 2 2 109 109 0 0 5 5 0.00 0.07
11/17 16.35.00 04.59 20.0 4 69.0 0 0 2 2 110 109 0 0 5 5 0.00 0.63
11/17 16.39.59 05.00 9.5 4 50.7 0 0 2 2 109 109 0 0 5 5 0.00 0.11
11/17 16.45.00 04.59 10.6 4 46.6 0 0 2 2 108 108 0 0 5 5 0.00 0.02
11/17 16.50.00 04.59 74.8 2 277.9 0 0 2 2 109 108 0 0 5 5 0.00 0.09
11/17 16.54.59 05.00 90.2 2 328.3 0 0 2 2 109 109 0 0 5 5 0.00 0.23

Figure 2-8 Summary Report

When you know your average system statistics, it is a very useful report to
quickly spot unusual CPU, DASD or paging behavior.

CPU Activity Report

CPU ACTIVITY

z/0S V1IR3 SYSTEM ID SC48 DATE 11/17/2002 INTERVAL 05.00.509
RPT VERSION V1R2 RMF TIME 16.54.59 CYCLE 1.000 SECONDS
CPU 2064 MODEL 2C7
CPU ONLINE TIME LPAR BUSY MVS BUSY CPU SERIAL I/O TOTAL % I/0 INTERRUPTS
NUMBER PERCENTAGE TIME PERC TIME PERC NUMBER INTERRUPT RATE HANDLED VIA TPI
0 100.00 90.17 95.15 OBOECB 431.3 0.75
1 100.00 90.16 9 1BOECB 429.6 0.78
TOTAL/AVERAGE 861.0 0.76
SYSTEM ADDRESS SPACE ANALYSIS SAMPLES = 301
NUMBER OF ASIDS DISTRIBUTION OF QUEUE LENGTHS (%)
TYPE MIN MAX AVG 0 1 2 3 4 5 6 7-8 9-10 11-12 13-14
IN
READY 1 12 4.0 0.0 6.9 3.3 12.2 49.1 21.5 4.6 1.6 0.0 0.3 0.0

Figure 2-9 CPU Activity Report (partial)

From the CPU Activity Report, take the MVS™ BUSY TIME percentage when
running in Basic mode, or the LPAR BUSY TIME Percentage when running in LPAR
mode.

Chapter 2. WebSphere and z/OS, walking the performance path 47

The value reports the percentage of time all processors were busy during the
RMF measurement interval. The example in Figure 2-9 on page 47 covers the
same interval as before. It confirms that the SC48 partition is running at 90.16%
CPU busy.

Check also the dispatching queue. The queue we are interested in is IN READY,
that is, the work that is in the system and ready to be dispatched.

In this example, no immediate CPU contention is visible. Although CPU is 90%
busy, something not unusual in a z/OS environment, the IN READY queue length
remains below three times the number of CPs for more than 90% of the time.
Note that the IN READY queue being above three times the number of CPs may
not be a problem if there are non-time-critical batch jobs running in the
background.

Note: Although it is usual to talk or write about a “CPU being p% busy”, this is
an abbreviated statement that has no physical reality. At any point in time, a
CP only has two operational states:

» Busy, that is 100 percent busy
» Idle, that is 0 percent busy

All CPU percentages in the RMF reports are relative to the RMF measurement
time interval. The CPU percentages reported express the amount of time the
CPU was busy over the measurement interval. Hence, the correct way to
understand the report really reads, “the CPU is 100% busy p% of the time.”

Example: A report that indicates a CPU busy 30% with a measurement
interval of 10 minutes really means that the CPU has been utilized 180
seconds over the 600-second interval.

Workload reports

The RMF Workload Activity Report contains information about your workload.
The interpretation of the numbers depends on whether you are reporting a
workload, a service class, or a reporting class. As stated earlier in this book, we
strongly recommend using reporting classes.

Enclave Report

Figure 2-10 on page 49 and Figure 2-11 on page 50 illustrate a workload report
for a reporting class associated with a WebSphere workload, running in
enclaves. It corresponds to the WLM definitions made to the CB subsystem.

48 Monitoring WebSphere Application Performance on z/OS

REPORT BY: POLICY=LSA510 REPORT CLASS=WASE

DESCRIPTION =LSA510 WAS EBUSINESS WORKLOAD

TRANSACTIONS TRANS.-TIME HHH.MM.SS.TTT --DASD I/0--

AVG 2.28 ACTUAL 147 SSCHRT 1.5
MPL 2.28 EXECUTION 101 RESP 1.8
ENDED 6777 QUEUED 45 CONN 1.2
END/S 22.59 R/S AFFINITY 0 DISC 0.3
#SWAPS 0 INELIGIBLE 0 Q+PEND 0.3
EXCTD 0 CONVERSION 0 I0SQ 0.0
AVG ENC 2.28 STD DEV 201

REM ENC 0.00

MS ENC 0.00

Figure 2-10 Workload activity (part 1)

AVG is the average number of active transactions during the interval.

MPL is the average number of transactions resident in storage during the
measurement interval.

ENDED is the number of transactions that ended during the interval, and END/S
is the number of transactions that ended per second. If the reporting class is
set up correctly, this is a direct measure of the application throughput as seen
by WebSphere.

AVG ENC is the average number of enclaves concurrently active at any point in
time. This information may be useful to size storage requirements or system
recovery aspects.

The DASD I/0 section indicates the profile of the disk activity within your
workload. High values for DISC, Q+PEND, or I0SQ may indicate an elongated
response time.

The SSCHRT field that indicates the disk start subchannel rate, in numbers per
second. From this section, you can detect a possible delay caused by I/O
activity to the disk subsystem.

By comparing this value with the DASD 1/O column in the Summary Report, it
is possible to quantify to what extent the WebSphere application participates
in the I/0 activity and possibly determine whether some system tuning actions
are required.

TRANS. -TIME contains the transaction time in HHH.MM.SS.TTT units, as seen
by Workload Manager. This is from the time the transaction is placed on the
server region WLM queue until the time the transaction is completed.

Chapter 2. WebSphere and z/OS, walking the performance path 49

— ACTUAL is the actual amount of time required to complete the work
submitted under the service class. This is the total response time.

— QUEUED is the average time the WebSphere transaction was delayed on
the WLM queue. The time can increase under full load conditions if the
number of servers in MAX_SRS is too low.

— STD DEV is the standard deviation of ACTUAL. It is a measure of variability of
the data in the sample. The higher the standard deviation, the more
spread-out it looks on a graph.

REPORT BY: POLICY=LSA510 REPORT CLASS=WASE
DESCRIPTION =LSA510 WAS EBUSINESS WORKLOAD

--DASD I/0-- --SERVICE RATES-- PAGE-IN RATES ---STORAGE----
SSCHRT 1.5 ABSRPTN 38580 SINGLE 0.0 AVG 0.00
RESP 1.8 TRX SERV 38580 BLOCK 0.0 TOTAL 0.00
CONN 1.2 TCB 229.7 SHARED 0.0 CENTRAL 0.00
DISC 0.3 SRB 0.0 HSP 0.0 EXPAND 0.00
Q+PEND 0.3 RCT 0.0 HSP MISS 0.0
10SQ 0.0 IIT 0.0 EXP SNGL 0.0 SHARED 0.00

HST 0.0 EXP BLK 0.0

APPL % 76.6 EXP SHR 0.0

Figure 2-11 Workload activity (part 2)

» Note that the STORAGE field is always zero for an enclave type report. Since
enclaves are not associated with a specific address space, no storage values
are reported.

» The APPL% field indicates the CPU activity incurred on behalf of all activities
which are part of the enclave. It is expressed as a percentage of CP time
used over the interval. Note that this represents a// the CPU activity across all
address spaces spanned by the transaction, including DB2 and CICS if the
transaction contains JDBC or JCA connectors.

No activity (or response time) information is reported by WLM within the CICS
assigned service class or report class.

» From the above fields, it is possible to calculate a characteristic of the
workload, the average CP cost per transaction. Using APPL%, the
measurement interval length expressed in milliseconds and the number of
ended transactions over the interval,

CP_millisecPerTran = Interval_length in milliseconds * APPL% / 100 / ENDED

50 Monitoring WebSphere Application Performance on z/OS

Example: Using the RMF fields for the report class WASE in Figure 2-10 on
page 49, which identifies a WebSphere application workload, you can derive
that over the measurement interval:

2.28 transactions were concurrently active, all of them running in enclaves.

A total of 6777 transactions ended, which translates into an average
throughput of 22.59 transactions per second.

The average response time was 147 milliseconds, with a standard
deviation of 201 ms.

Over the measurement interval, APPL% indicates that one CP was busy
76.6% of the time to service WASE. Since the measurement interval is 5
minutes, this translates into:

Used CP time = 300 sec x .766 = 229.8 sec

Over the same interval, 6777 transactions have been processed. We can
derive the average CP cost in millisecond per transaction:

CP_MillisecPerTran = 229.8 x 1000 / 6777
CP_MiTlisecPerTran 33.90 ms

Address space report

As recommended, server address space activity—hat does not run under an
enclave—should be assigned to a service class in the STC group.

If you also defined a report class, obtain a workload report for the server region.

REPORT BY: POLICY=LSA510 REPORT CLASS=WASS

TRANSACTIONS
AVG 2.00
MPL 2.00
ENDED 0
END/S 0.00
#SWAPS 0
EXCTD 0
AVG ENC 0.00
REM ENC 0.00
MS ENC 0.00

DESCRIPTION =LSA510 WAS SERVER AS ACTIVITY
--SERVICE RATES-- PAGE-IN RATES ----STORAGE----

ABSRPTN 181961 SINGLE 0.0 AVG 56146.9
TRX SERV 181961 BLOCK 0.0 TOTAL 112293
TCB 8.0 SHARED 0.0 CENTRAL 112293
SRB 0.3 HSP 0.0 EXPAND 0.00
RCT 0.0 HSP MISS 0.0
IIT 0.0 EXP SNGL 0.0 SHARED 3216.83
HST 0.0 EXP BLK 0.0
APPL % 2.8 EXP SHR 0.0

Figure 2-12 Workload report for WebSphere server address space (partial)

There are three major differences in the interpretation of the data, since the
reported activity is address-space based:

Chapter 2. WebSphere and z/OS, walking the performance path 51

» The TRANSACTION AVG indicates the number of server region address spaces
active over the interval. Using this field, you can monitor the evolution of the
number of servers between the MIN_SRS and MAX_SRS settings.

» STORAGE values are now filled in.

» Under normal conditions, the APPL% is typically very low. However, gradual
increase in APPL% may be an indication of excessive garbage collector
activity caused by a heap size too small, or a memory leak.

Using workload definitions it is possible to calculate the system uncaptured
percentage value. This is the part of CP resources used by system-related
services on behalf of the workloads but not directly accounted for in the enclave
or address space activity.

1. For each member in the Sysplex, multiply the CPU_Busy% obtained from the
CPU report by the number of CPs available to the z/OS logical partition. This
brings the percentage value to a unit consistent with the APPL% reported in the
workload report. Then, the sum for all systems participating in the sysplex is:

A11_CP_Busy% = Sum of [CPU_Busy% * Number of CPs]

2. From the RMF Workload Activity report, obtain the total CP utilization
reported for all workloads. This is indicated by the APPL% value for the policy.
The report is obtained when option WLMGL(POLICY) is specified. The
APPL% value for the policy represents the percentage of time any CP in the
sysplex configuration was busy processing a workload defined in the WLM
policy:

ALL_Wk1% = APPL% from RMF Policy report

3. The uncaptured CP value, expressed in percentage of CP activity over the
measurement interval, is calculated by subtracting ALL_Wk1% obtained in step
(2) from A11_CP_Busy% calculated in step (1):

uncaptured_CP% = A11_CP_Busy% - ALL_Wk1%

Typically, the uncaptured CP% represents 10% to 20% of the total CP
utilization.

Response time distribution

The workload report provides response times for all service class periods and
response time distribution information. The response time distribution is provided
per service class, for each service where a response time objective is defined.
This is much more meaningful to the performance analyst than the average
response time value.

52 Monitoring WebSphere Application Performance on z/OS

WORKLOAD ACTIVITY
z/0S VIR3 SYSPLEX WTSCPLX1 DATE 12/01/2002 INTERVAL
RPT VERSION V1R2 RMF TIME 17.30.00
POLICY ACTIVATION DATE/TIME 11/26/2002 03.00.58

----TIME---- --NUMBER OF TRANSACTIONS-- ------- PERCENT-=-=-=--- 0 10 20 30 40
50 60
HH.MM.SS.TTT CUM TOTAL IN BUCKET CUM TOTAL IN BUCKET
Leloelealeal el el
< 00.00.00.250 3716 3716 36.9 36.9
SSSSSSSSSSS5SSSS5>5>>
<= 00.00.00.300 4129 413 41.0 4.1 >>>
<= 00.00.00.350 4601 472 45.7 4.7 >>>
<= 00.00.00.400 5041 440 50.0 4.4 >>>
<= 00.00.00.450 5363 322 53.2 3.2 >>
<= 00.00.00.500 5633 270 55.9 2.7 >>
<= 00.00.00.550 5876 243 58.3 2.4 >>
<= 00.00.00.600 6119 243 60.7 2.4 >>
<= 00.00.00.650 6277 158 62.3 1.6 >>
<= 00.00.00.700 6445 168 64.0 1.7 >>
<= 00.00.00.750 6601 156 65.5 1.5 >>
<= 00.00.01.000 7290 689 72.4 6.8 >>>>
<= 00.00.02.000 9022 1732 89.5 17.2 >>>>>>>>>
> 00.00.02.000 10075 1053 100 10.5 >>>>>>

Figure 2-13 Response time distribution (partial view)

Note that the interpretation of the data requires some knowledge of the
application workload. If you have a coherent J2EE application, response time
distribution would be concentrated into one peak, but if the application contains a
mix of static html pages and J2EE transactions, the response time distribution
may show two peaks reflecting the two different types of transactions.

From this information, it is also possible to set an achievable percentile response
time, a value commonly used in establishing service level agreements.

References
For more information on RMF reports, see the following manuals:

» z/OS Resource Measurement Facility Report Analysis, SC33-7991.

» z/OS Resource Measurement Facility User ’s Guide, SC33-7990

» z/OS Resource Measurement Facility Performance Management Guide,
SC33-7992

See also the following Web sites:

Chapter 2. WebSphere and z/OS, walking the performance path 53

http://www.ibm.com/servers/eserver/zseries/zos/rmf/
http://www.ibm.com/servers/eserver/zseries/zos/wim/

2.3.3 DB2 SMF records

54

DB2 accounting times

The accounting report shown in Example 2-2 on page 55 is based on trace data
generated by DB2. The DB2 accounting data is usually written to SMF. In that
case, the SMF record type for DB2 accounting information is 101. The
accounting counters come in classes and are defined as follows:

» Class 1 time is the time from the first SQL statement you issue in your
application (that either triggers thread creation or re-signon) until
disconnection (thread termination or re-signon of the next user). Both class 1
elapsed time and class 1 CPU time are reported. This time includes the time
used by the application code, as well as the time used to execute inside DB2.

» Class 2 time is the time spent within DB2, processing SQL statements. Both
class 2 elapsed time and class 2 CPU time are reported.

» Class 3 time is thread suspension time, for instance, when the application has
to wait for an I/O to complete or wait for a lock, while processing SQL
statements.

Analyzing DB2 accounting data

The counters present in the accounting report are the cornerstone for DB2
performance and tuning of your applications.They help you to understand your
applications in terms of time spent in DB2 and also DB2 resource utilization.

A DB2PM accounting report contains averages. These averages are calculated
by taking the sum of all occurrences for a specific counter and dividing the total
by the number of occurrences (that is the number of accounting records
processed). This number of occurrences is shown in the highlights section of the
DB2 accounting report.

Here are some areas in the accounting report that provide useful insight into
where time was spent:

Class 1 versus Class 2 time

Analyzing and comparing class 2 elapsed time and class 2 CPU time, with class
1 elapsed time and class 1 CPU time, allows you to understand how your
application is working; how much time is spent in the application (class 1 - class
2) and how much time is spent in DB2 (class 2). When you experience a
performance problem, and most of the time is spent in the application (class 1
time - class 2 time is big), there is probably no point in trying to optimize the work

Monitoring WebSphere Application Performance on z/OS

http://www-1.ibm.com/servers/eserver/zseries/zos/rmf/
http://www-1.ibm.com/servers/eserver/zseries/zos/rmf/
http://www-1.ibm.com/servers/eserver/zseries/zos/wlm/

done in DB2. A significant difference could indicate a problem in the application

program.

The elapsed time distribution section of Example 2-2 shows that (on average)
90% of the elapsed time is spent in the application, and only 3% inside DB2.
Therefore, if this application has a performance concern, it is most likely to be in
the application.

Example 2-2 DB2 Performance Monitor - Accounting report

LOCATION: DB4B
GROUP: DB2V714B
MEMBER: DB4B
SUBSYSTEM: DB4B
DB2 VERSION: V7

PRIMAUTH: CBASRU2 PLANNAME: DSNJDBC

ELAPSED TIME DISTRIBUTION

DB2 PERFORMANCE MONITOR (V7) PAGE: 1-4
ACCOUNTING REPORT - LONG REQUESTED FROM: NOT SPECIFIED
TO: NOT SPECIFIED
ORDER: PRIMAUTH-PLANNAME INTERVAL FROM: 12/06/02 04:22:46.68
SCOPE: MEMBER TO: 12/06/02 04:57:45.33

CLASS 2 TIME DISTRIBUTION

APPL | > 90%
DB2 [=> 3%
SUSP |===> 7%
AVERAGE APPL(CL.1) DB2 (CL.2) IFI (CL.5) CLASS 3 SUSPENSIONS AVERAGE TIME AV.EVENT HIGHLIGHTS
ELAPSED TIME 0.631648 0.061819 N/P LOCK/LATCH(DB2+IRLM) 0.021572 0.87 #OCCURRENCES ~ : 21728
NONNESTED 0.631648 0.061819 N/A SYNCHRON. I/0 0.020715 11.19 #ALLIEDS ;21728
STORED PROC ~ 0.000000 0.000000 N/A DATABASE 1/0 0.015984 10.23 #ALLIEDS DISTRIB: 0
UDF 0.000000 0.000000 N/A LOG WRITE 1/0 0.004731 0.96 #DBATS : 0
TRIGGER 0.000000 0.000000 N/A OTHER READ 1/0 0.000257 0.06 #DBATS DISTRIB. : 0
OTHER WRTE 1/0 0.000094 0.01 #NO PROGRAM DATA: 21728
CPU TIME 0.052238 0.013618 N/P SER.TASK SWTCH 0.000017 0.00 #NORMAL TERMINAT: 21720
AGENT 0.052238 0.013618 N/A UPDATE COMMIT 0.000001 0.00 #ABNORMAL TERMIN: 8
NONNESTED 0.052238 0.013618 N/P OPEN/CLOSE 0.000000 0.00 #CP/X PARALLEL. : 0
STORED PRC 0.000000 0.000000 N/A SYSLGRNG REC 0.000016 0.00 #I0 PARALLELISM : 0
UDF 0.000000 0.000000 N/A EXT/DEL/DEF 0.000000 0.00 #INCREMENT. BIND: 0
TRIGGER 0.000000 0.000000 N/A OTHER SERVICE 0.000000 0.00 #COMMITS : 43447
PAR.TASKS 0.000000 0.000000 N/A ARC.LOG(QUIES) 0.000000 0.00 #ROLLBACKS : 6
ARC.LOG READ 0.000000 0.00 #SVPT REQUESTS 0
SUSPEND TIME N/A 0.042656 N/A STOR.PRC SCHED 0.000000 0.00 #SVPT RELEASE 0
AGENT N/A 0.042656 N/A UDF SCHEDULE 0.000000 0.00 #SVPT ROLLBACK 0
PAR.TASKS N/A 0.000000 N/A DRAIN LOCK 0.000000 0.00 MAX SQL CASC LVL: 0
CLAIM RELEASE 0.000000 0.00 UPDATE/COMMIT : 7.83
NOT ACCOUNT. N/A 0.005545 N/A PAGE LATCH 0.000001 0.00 SYNCH I/0 AVG. : 0.001851
DB2 ENT/EXIT N/A 559.87 N/A NOTIFY MSGS 0.000000 0.00
EN/EX-STPROC N/A 0.00 N/A GLOBAL CONTENTION 0.000000 0.00
EN/EX-UDF N/A 0.00 N/A COMMIT PH1 WRITE I/0 0.000000 0.00
DCAPT.DESCR. N/A N/A N/P ASYNCH IXL REQUESTS 0.000000 0.00
LOG EXTRACT. N/A N/A N/P TOTAL CLASS 3 0.042656 12.13
NORMAL TERM. AVERAGE TOTAL ~ ABNORMAL TERM. TOTAL IN DOUBT TOTAL DRAIN/CLAIM AVERAGE TOTAL
NEW USER 1.00 21720 APPL.PROGR. ABEND 8 APPL.PGM ABEND 0 DRAIN REQUESTS 0.00 0
DEALLOCATION 0.00 0 END OF MEMORY 0 END OF MEMORY 0 DRAIN FAILED 0.00 0
APPL.PROGR. END 0.00 0 RESOL.IN DOUBT 0 END OF TASK 0 CLAIM REQUESTS 12.94 281261
RESIGNON 0.00 0 CANCEL FORCE 0 CANCEL FORCE 0 CLAIM FAILED 0.00 0
DBAT INACTIVE 0.00 0
RRS COMMIT 0.00 0

Chapter 2. WebSphere and z/OS, walking the performance path 55

Class 2 elapsed time versus Class 2 CPU time versus Class 3 time

Also, compare the class 2 elapsed time with the class 2 CPU time. A high
difference might mean there is a lot of time spent doing things that don’t use
CPU, like for example, I/O, or being suspended waiting for a lock. In this case,
look at the class 3 times, as well as the counter NOT ACCOUNT. The Class 2
distribution section in Example 2-2 shows that when the application is executing
an SQL statement (class 2 time), most of the time the application is not using
CPU, but is suspended, waiting inside DB2, before it can continue.

Class 3 wait times

To get some idea about why the application is suspended most of the time when
running inside DB2, you can look at the class 3 wait counters. In Example 2-2,
we see that most of the suspend time is because of database I/O wait time
0.016705 seconds on average, with on average 10.20 I/O’s per occurrence
(transaction). Note that 0.016705 is not the average time to do a single 1/0
operation, but the average time the transaction waits for all database I/0O
operations. The average time for a single I/O is shown in the highlights section as
SYNCH 1/0 AVG. with a value of 0.001922. This is more or less 2 milliseconds
per I/O, which is great.

Not accounted time

The NOT ACCOUNT counter is equal to the class 2 elapsed time minus the
class 2 CPU time minus the sum of all class 3 suspension times. Normally this
number is very small. In case it is not, it is often an indication that the system is
very busy (most likely doing paging as paging is not captured by RMF as CPU
time, or waiting for the CPU to become available). There can be other reasons for
high NOT ACCOUNT values, but this is beyond the scope of this book. If you see
high NOT ACCOUNT values and you are not in any of the cases mentioned
above, it is probably a good idea to contact your IBM service representative to
determine its cause.

DB2 thread reuse

A major component of a short-running transaction’s execution time is normally
the time it takes to set up a DB2 connection. In order to avoid that cost, DB2 has
implemented a technique that allows threads to be reused. From the WebSphere
side you can indicate that you want to enable this by using data sources. (Note
that DB2 data source support is only available starting in DB2 V7). To verify that
threads are actually reused inside DB2 by WebSphere, you can check the NEW
USER field, 21720 in our case, and compare it to the total number of
occurrences 21728. This shows that in almost all cases the thread was reused,
which is excellent.

56 Monitoring WebSphere Application Performance on z/OS

Tip: Although DB2 Performance Monitor still exists as a product, a new
follow-on product, called DB2 Performance Expert for z/OS, is available. For
more information on DB2 Performance Monitor and DB2 Performance Expert,
see DB2 Performance Monitor for z/0S, SG24-6867.

2.3.4 WebSphere SMF records

WebSphere SMF Record Interpreter

The WebSphere for z70S SMF Record Interpreter is a tool that enables the
interpretation of complete SMF output data sets from the IBM z/OS utility
program IFASMFDP. It writes a header line for all SMF record types and a
detailed dump for SMF record type 120.

The tool is a Java utility. It is executed by a Java Virtual Machine (JVM) under the
z/0OS or OS/390 UNIX environment. The base tool can be downloaded from the
WebSphere Application Server for z/0OS and OS/390 Web site at:

http://www.ibm.com/software/webservers/appserv/zos_0s390/index.html

The z/0S SMF Summary Viewer

We used an enhanced version of the SMF Browser, the WebSphere V. 4.0.1 for
z/0OS SMF Summary Viewer, made available by the Washington Systems Center.
The tool can be downloaded from the Advanced Technical Support Information
Web site. See the document WP100244 in the White Papers category at:

http://www.ibm.com/support/techdocs

This version of the SMF Browser adds a summary report, much more easy to
read than the standard report. It shows activity for each J2EE server instance,
bean, and method from the SMF type 120 records.

Chapter 2. WebSphere and z/OS, walking the performance path 57

http://www.ibm.com/software/webservers/appserv/zos_os390/index.html
http://www.ibm.com/support/techdocs

File

--?While Paper: - Microsoft Internet Explorer

Edit View Favorites Tools Help |

= Bac

k-w = - @ @ ﬁ| @_Seamh | Favorites @Media @ | %v =r

-+ Select a country

Address I@ http:fwww-1.ibmeomisupporttechdocsiatzmastr.nsfiWe bind ex WP 100244 j 6) Go

+ Support & downloads

R/
Techdocs - The == \ P
Technical Sales Library N C———
Flashes WAS V. 4.0.1 for z/0OS SMF Summary Viewer
Fresentations & Tools
Hirts, Tips & Technotes Organization: Washington Systems Center
FAQS Product{s): WehSphere Release: All Releases
Doc. Number: WP100244 Revised: 1072772002 [

‘White Papers

Ly el WAS v4.0.1 for 703 download site
- List by date httnciiwaw ibim. comisoftwaratweb serversfappserdownload vdzhtmly. It adds a summary repart

- List by number
- Wiew Document
Customer Support Flans

Sizings WSC SMF 120 Performance SummaryZ -Date: Fri Oct 18 0%9:20:03 EDT Z00Z , SysID: WG3L
Search Techdocs SMF -Record Time Server Bean/WebipplName EBytes Bytes # of El.Time(m3ec)
Techdocs Feedback Huwbr -Type hhimwm:ss Instance Method/Servlet Sent/ Rec'd Calls Ave, Max.
N e et Rl t 3- t —4-—--+ 5] t F=———t--—-5----+
2 120.3 9:20:03 WASASR3A 6442 138188
3 120.6 9:20:03 WASASR3A RemotellebippBean
dispatchi) 5 187 337
PolicySessionBean
create() 4 a 1

Home | Products & services | Support & downleads | My account

Techdocs - The Technical Sales Library \

Abstract: This version ofthe SMF Browser is an extension of the program distributed from the

showing activity for each J2EE server instance, bean, and method fram the SMF type 120 records.

This version has been updated to handle the SMF 120 subtypes T & 8 for the Web Container. Here is a
short view of a sample report:

tranl (fava. lang. 3tring,int)

@

z 21 24 =
[[s ntemet v

Figure 2-14 Obtaining the SMF Summary Viewer from WSC

58

Java class files and source files are in the WSCSMFPerf2.jar file; documentation
to run the analysis program is in WSCSMF120.doc file.

Running the z/0S SMF Summary Viewer

Since the tool does not interpret any SMF records other than record 120, it is
recommended that you filter out all other records. The following example dumps
SMF records 120 from system data sets SYS1.5C48.MAN1 and SYS1.SC48.MAN2 into a
sequential file named FRANCK.SC48T.SMF.

Example 2-3 Using IFASMFDP to copy SMF records into a sequential file

//LSA5101 JOB 999, 'ITSO',

/1 MSGCLASS=T,NOTIFY=&SYSUID,CLASS=A
//DUMP1 EXEC PGM=IFASMFDP

//INSMF1 DD DSN=SYS1.SC48.MAN1,DISP=SHR

Monitoring WebSphere Application Performance on z/OS

//INSMF2 DD DSN=SYS1.SC48.MAN2,DISP=SHR
//SMFDATA DD DSN=FRANCK.SC48T.SMF,

// DCB=(RECFM=VBS,LRECL=32760),
// SPACE=(CYL, (25,50)),

/1 UNIT=SYSALLDA,

/1 DISP=(NEW,CATLG)

/1*

//SYSPRINT DD SYSOUT=*

//SYSIN DD *
OUTDD(SMFDATA, TYPE (120))
INDD (INSMF1,0PTIONS (DUMP))
INDD (INSMF2,0PTIONS (DUMP))

The WebSphere for z/0S SMF Record Interpreter dumps all the WebSphere for
z/OS-relevant data into a printable output file.

For example, to interpret data from a cataloged sequential file named
FRANCK.SC48T.SMF, previously created using the IFASMFDP utility as
described in Example 2-3, and send the output to file WTSCplexSMFout.txt, you
would go to the TSO OMVS shell and execute the command as shown in
Figure 2-15.

Chapter 2. WebSphere and z/OS, walking the performance path 59

IBM

Licensed Material - Property of IBM

5694-A01 (C) Copyright IBM Corp. 1993, 2001

(C) Copyright Mortice Kern Systems, Inc., 1985, 1996.

(C) Copyright Software Development Group, University of Waterloo, 1989.
A11 Rights Reserved.

U.S. Government users - RESTRICTED RIGHTS - Use, Duplication, or
Disclosure restricted by GSA-ADP schedule contract with IBM Corp.

IBM is a registered trademark of the IBM Corp.

PATH reset to .:/usr/1pp/java/IBM/J1.3/bin:/usr/1pp/Printsrv/bin:/bin:.

PATH is /var/iwl/bin:.:/usr/1pp/java/IBM/J1.3/bin:/usr/1pp/Printsrv/bin:/bin
:.:/u/franck:

FRANCK: /u/franck: >

===> java -cp WSCSMFPerf2.jar com.ibm.ws390.sm.smfview.Interpreter

"FRANCK.SC52A.SMF" . /WTSCp1exSMFsummary . txt 1>WTSCplexSMFout.txt

INPUT

ESC=¢ 1=Help 2=SubCmd 3=H1pRetrn 4=Top 5=Bottom 6=TSO
7=BackScr 8=Scroll 9=NextSess 10=Refresh 11=FwdRetr 12=Retrieve

Figure 2-15 Running the SMF Record Interpreter tool

The summary report of the zZOS SMF Record Interpreter would be saved in file
WTSCplexSMFsummary.txt and available to be browsed or edited through ISPF.

Sample output

Data from the sequential file is produced record by record. Each record contains
a number of triplets, which are first described in the record’s header section (the
first part of a record). The description is then followed by the triplet contents,
which are presented by the tool in the sequence of their appearance within the
record.

The WebSphere for z70S SMF Summary Viewer interprets each section in its
specific way and prints the interpreted data into the output file.
1. Summary report file sample from Trade2

The detail report file lists each activity that occurs in the server during the
collection interval, in server, Web container, and J2EE container. A sample
report is shown in Example 2-4.

60 Monitoring WebSphere Application Performance on z/OS

Example 2-4 SMF Browser (1)

WSC SMF 120 Performance Summary2 -Date: Sun Nov 10 13:37:00 EST 2002 , SysID: SC52

SMF -Record Time

Numbr -Type hh:mm:

33 120.1 13:37
34 120.5 13:37

SS

:00
:00

Server

Instance

Bean/WebAppName Bytes Bytes # of E1.Time(mSec)
Method/Servlet Sent Rec'd Calls Ave. Max.

PR SN JRRpp Uy, PR SR SRS Y T S S SR p—

FMISRVC
FMISRVC

FMISRVC

FMISRVC
FMISRVC

35 120.7 13:37:00 FMISRVC

579 4191

Trade_WebApp

dispatch() 1 1 1
/welcome. jsp 1

JSP 1.1 Processor 1
trade Web Application_0

863 4559

TradeRegistryBean

findByPrimaryKey (trade.Registr 1 1 1

>ejbLoad 1 0 0

>ejbActivate 1 0 0
login(java.lang.String) 1 0 0

>ejbStore 1 0 0

>ejbPassivate 1 0 0
TradeAccountBean

findByPrimaryKey (trade.Account 1 3 3

>ejbLoad 1 0 0

>ejbActivate 1 0 0
getBalance() 1 0 0

>ejbPassivate 1 0 0
Trade_WebApp

dispatch() 1 16 16
TradeSession

create()

login(java.lang.String,java.la 1 1 1
getBalance(java.lang.String) 1 3 3
/tradehome. jsp 1
TradeAppServiet 15

JSP 1.1 Processor 1

trade Web Application_0

This trace shows the activities in server, J2EE container, and Web container
caused by Login transaction in Trade2 sample at a specific time. It includes
invocation of welcome.jsp, tradehome.jsp and TradeAppServlet by the Web

container, and EJB activities such as each method invocation of
TradeRegistryBean entity EJB, TradeAccountBean entity EJB and TradeSession
session EJB. Response time of each method call and number of bytes
downstream and upstream served by the server are also collected.

2. Summary report file sample from elTSO application

Chapter 2. WebSphere and z/OS, walking the performance path

61

The summary report displays statistic data, such as average and maximum
elapsed time of the server, container, Web container, and J2EE container for
each type of activity during the collection interval. A type of activity can be the
same JSP invocation, or the same method call on the same EJB. The following is
a sample of a summary report file for an interval of 5 minutes.

Example 2-5 SMF Browser (2)

WSC SMF 120 Performance Summary?2 -Date: Mon Nov 18 18:15:03 EST 2002 , SysID: SC50

SMF -Record Time Server Bean/WebAppName Bytes Bytes # of E1.Time(mSec)

Numbr -Type hh:mm:ss Instance Method/Servlet Sent Rec'd Calls Ave. Max.
L e e e B e et E LR RS ey S P
44 120.3 19:30:01 FMESRVB 34004 226469
45 120.6 19:30:01 FMESRVB ItemEntity

findByPrimaryKey (itemEntityPac 5 1553 2129
WebERWWNO_WebApp

create() 3 1 1
drivelLoadServiet(java.lang.Str 1 1345 1345
dispatch() 8 3587 19361
WarehouseEntity

findByPrimaryKey (warehouseEnti 17 3428 7107
WebERWWJustPC_WebApp

create() 4 0 0
drivelLoadServiet(java.lang.Str 2 992 1002
dispatch() 8 11524 49825
PriceChangeSession

create() 5 17 45
priceChangeSession(priceChange 5 3639 6930
PaySession

create() 15 1 2

paySession(paySessionPackage.P 15 18521 46859
DeliverySession

deliverySession(deliverySessio 1 46129 46129
create() 2 2 2
RemoteWebContainer

create() 14 0 2

drivelLoadServiet(java.lang.Str 14 526 1361
46 120.6 19:30:01 FMESRVB WebERWWD_WebApp

create() 4 1 1
drivelLoadServiet(java.lang.Str 2 751 1344
dispatch() 2 29765 59506
NewOrderSession

create() 2 0 0
NewOrderEntity

findByWIdAndDId (short,short,bo 7 6667 32528
WebERWWPY1_WebApp

create() 12 0 1
drivelLoadServiet(java.lang.Str 9 270 1346

62 Monitoring WebSphere Application Performance on z/OS

dispatch() 26 12730 82043
47 120.8 19:30:01 FMESRVB

WebERWWOS_15

WebERWWSL_17

WebERWWPQ_16

WebERWWjmsPRR_25

eRWWPriceChangeHTTPSession_26

WebERWWPC_21

DEController 1 59328 59328
SimpleFileServlet 1 22 22
JSP 1.1 Processor 1 59326 59326
/DEAGResults. jsp 1 54922 54922
WebERWWDelivery_ 20
SimpleFileServiet 8 27 51
WebERWWNO_19
SimpleFileServlet 3 49 61
/error.jsp 5 132 168
JSP 1.1 Processor 5 132 168
WebERWWJustPC_14
PAYController 8 33396 62242
/PAYAGResults.jsp 8 31355 57871
SimpleFileServiet 18 25 67
/error.jsp 8 680 898
JSP 1.1 Processor 8 33361 62177
WebERWWPay 24
49 120.3 19:35:01 FMESRVB 57124 147311

For example, we can see that findByPrimaryKey method on ItemEntity EJB
was called 5 times with an average elapsed time of 1553 ms and maximum
elapsed time of 2129 ms. Another example is SimpleFileServlet, which is
responsible for serving static pages in the Web app. The report shows the
number of SimpleFileServlet calls in each Web app and the average elapsed
time in the Web container.

Observation - enabling SMF record type 120

We tried to run a set of measurements to evaluate the overhead brought by SMF
recording of SMF record type 120 in our environment. Since we did not run in a
controlled environment, the absolute values for each may be imprecise and there
is no guarantee that you would find exactly the same result in your installation,
but the difference between the two runs provides at least an indication.

The measurements were made on one of the z/OS partitions, system SC48,
running two shared CPs on a zSeries 900 Model 1C8. This test was run with
WebSphere V4.0.1 at maintenance level W401407.

Chapter 2. WebSphere and z/OS, walking the performance path 63

SMF 120 records were enabled through the SMEUI, and no subtype selection
was specified in SMFPRMxx.

Activity Records

The test stopped short because the SMF data sets were filled in approximately 2
minutes, although they were sized to support approximately one hour. Since our
RMF measurement interval was set to 5 minutes, we were never able to obtain
data to quantify the observation.

Although we could not quantify, our recommendation after this test is to disable
SMF recording for type 120 Activity Records on a production system. If type 120
Activity Records are required, they should be produced on a test or development
system.

Interval Records

We ran a similar test, now with the interval records enabled. The recording
interval in the SMEUI was set to zero in order to synchronize on the SMF interval
and obtain data consistent with other SMF records.

Two measurements were made, one with 50 clients and the other with 100
clients. All results were obtained from RMF summary and workload reports.
Table 2-1 on page 64 summarizes the results obtained for the 50 clients
workload.

Table 2-1 SMF test at 50 clients

At 50 clients SMF SMF [disabled - enabled]
(7 tran/sec) disabled enabled

Total CP% 35.3% 38.2% 2.9%
Tran/sec 7.0 7.0 0

MPL 0.37 0.47 0.10
WebSphere workload 20.5% 22.4% 1.9%

CP APPL %

Transaction Response 52 66 14 (26%)
Time in ms

WebSphere workload 29.3 32.0 2.7

CP APPL ms per tran

Observations:
» The throughput remains unchanged, at 7.0 transactions per second.

64 Monitoring WebSphere Application Performance on z/OS

» The transaction response time is significantly increased; this is also reflected
in the MPL.

» No significant change is visible in the RMF reports for I/O activity or memory
usage.

» The total CPU cost is expressed in percentage of one shared CP in the
two-way partition (this test was run on a zSeries 2064-1C8). It represents
2.9% of CP time over the measured interval, of which 1.9% are reflected
within the WebSphere workload. This translates into:

— 0.27% of CP time per transaction over the measured interval reported as
an addition to the workload part

— 0.14% of CP time per transaction for the non-enclave-related CP part, that
is, the control region address space, system and subsystem activity, plus
the uncaptured time.

50.0% 50.0 70
66
60
400% - —————-—————————————————- 400 - ————————-—- -~
38.2%
52 50
35.3%
32.0
30.0% - - oo 3004 - - 2
el =
2 29.3 o =
o 1%
S 3 §
8 E g
o o
22.4% &} 30 S
20.0% —- - 205% - - 20.0 + - — - IS
20
10.0% —f - -- — 10.0 -+ -- -
10
Total CP % WAS CP APPL % Tran Time CP ms per tran
0.0% 0.0 0
SMF OFF SMF ON SMF INTVL OFF SMF INTVL ON

Figure 2-16 SMF type 120 Interval records ON or OFF for 50 clients

Results consistent with the above observations were observed when the load
was increased to 100 clients:

» There is again an increase in response time; this is also reflected in the MPL.

Chapter 2. WebSphere and z/OS, walking the performance path 65

66

» The total cost is 5.8% of CP time over the measured interval, of which 3.9%
are reflected within the WebSphere workload. This translates into:

— 0.28% of CP time per transaction added to the workload part.
— 0.15% of CP time per transaction for the non-enclave CP part.

Table 2-2 SMF test at 100 clients

At 100 clients SMF SMF [disabled - enabled]
(13.8 tran/sec) disabled enabled

Total CP% 58.2% 64.0% 5.8%
Tran/sec 13.8 13.8 0

MPL 0.83 1.09 0.26
WebSphere Workload 40.8% 44.7% 3.9%

CP APPL %

Transaction Response 60 79 19 (30%)
Time in ms

WebSphere Workload 29.5 32.5 2.7

CP APPL ms per tran

As expected, it is impossible to produce and record performance data without
actually impacting the performance of what you are trying to measure. Every
software measurement tool represents a certain cost, in terms of CPU overhead,
memory used, and input/output activity.

Based on the above observations, our recommendations are:

» Inthe absence of another WebSphere application monitoring tool (see Part 2,
“WebSphere performance tools” on page 107), SMF type 120 records are the
only source of information on application activity. If you require application
performance information on the Web or J2EE container, enable SMF type 120
interval record. Be aware that SMF recording has a price, but running a
production system with no information on application activity may prove even
more costly.

» Do not enable recording of SMF type 120 Activity Records on a production
system, unless you have a compelling reason to do so. When doing so, review
the size and placement of SMF data sets for I/0O performance.

» Be selective. Only enable SMF type 120 interval records when you intend to
use them at some point in time.

» When SMF type 120 Interval records are enabled:

— If you plan to use an online reporting tool that exploits SMF records type
120, set the recording interval to the value recommended by the tool.

Monitoring WebSphere Application Performance on z/OS

— In the absence of any other recommendation, synchronize the recording
interval with the SMF and RMF measurement interval (specify a value of
zero in the SMEUI). This will simplify the analysis when trying to correlate
application data from SMF type 120 with RMF data.

2.3.5 Garbage Collection (GC) trace

WebSphere runs applications in a JVM. When this JVM fails to allocate memory
due to a shortage of Java heap, it starts garbage collection. To identify whether
the JVM heap size is large enough or if there is a memory leak, you can collect a
verbose GC trace.

To turn on a verbose GC trace in WebSphere Application Server, use the SMUEI
or edit tool to set JVM_ENABLE_VERBOSE_GC=1 in the current.env file. The verbose
GC trace is sent to sysout of the server region job. Example 2-6 shows a GC
trace output.

Example 2-6 GC Trace

JVMST080: -verbose:gc flag is set
JVMST082: -verbose:gc output will be written to stderr
JVMST080: -verbose:gc flag is set
JVMST082: -verbose:gc output will be written to stderr
<GC[0]: Expanded System Heap by 65536 bytes
<GC[0]: Expanded System Heap by 65536 bytes
<GC[0]: Expanded System Heap by 65536 bytes
<AF[1]: Allocation Failure. need 16400 bytes, 0 ms since last AF>
<AF[1]: managing allocation failure, action=1 (14168/131004928)
(3145728/3145728)>
<GC(1): GC cycle started Thu Dec 5 15:49:25 2002
<GC(1): freed 115391688 bytes, 88% free (118551584/134150656), in 93 ms>
<GC(1): mark: 77 ms, sweep: 16 ms, compact: 0 ms>
<GC(1): refs: soft 0 (age >= 32), weak 40, final 414, phantom 0>
<AF[1]: completed in 93 ms>
<AF[2]: Allocation Failure. need 40 bytes, 59144 ms since last AF>
<AF[2]: managing allocation failure, action=1 (0/131004928) (3145728/3145728)>
<GC(2): GC cycle started Thu Dec 5 15:50:25 2002
<GC(2): freed 105000600 bytes, 80% free (108146328/134150656), in 190 ms>
<GC(2): mark: 172 ms, sweep: 18 ms, compact: 0 ms>
<GC(2): refs: soft 0 (age >= 32), weak 0, final 8972, phantom 0>
<AF[2]: completed in 191 ms>
<AF[64]: Allocation Failure. need 32784 bytes, 2556 ms since last AF>
<AF[64]: managing allocation failure, action=1 (29588424/131004928)
(1383360/3145728)>
<GC(64): GC cycle started Thu Dec 5 15:55:16 2002
<GC(64): freed 40370448 bytes, 53% free (71342232/134150656), in 186 ms>
<GC(64): mark: 167 ms, sweep: 19 ms, compact: 0 ms>

Chapter 2. WebSphere and z/OS, walking the performance path 67

<GC(64): refs: soft 0 (age >= 32), weak 0, final 6210, phantom 0>
<AF[64]: completed in 187 ms>

<AF[65]: Allocation Failure. need 32784 bytes, 2327 ms since last AF>
<AF[65] : managing allocation failure, action=1 (28967432/131004928)
(1104624/3145728)>
<GC(65): GC cycle started Thu Dec 5 15:55:18 2002
<GC(65): freed 40895480 bytes, 52% free (70967536/134150656), in 185 ms>
<GC(65): mark: 163 ms, sweep: 22 ms, compact: 0 ms>
<GC(65): refs: soft 0 (age >= 32), weak 0, final 6264, phantom 0>
<AF[65]: completed in 186 ms>
<AF[178]: Allocation Failure. need 32784 bytes, 1571 ms since last AF>
<AF[178]: managing allocation failure, action=2 (187840/134150656)>
<GC(178): GC cycle started Thu Dec 5 16:00:25 2002
<GC(178): freed 38656688 bytes, 28% free (38844528/134150656), in 218 ms>
<GC(178): mark: 204 ms, sweep: 14 ms, compact: 0 ms>
<GC(178): refs: soft 0 (age >= 32), weak 0, final 7774, phantom 0>
<AF[178]: completed in 219 ms>

<AF[179]: Allocation Failure. need 4112 bytes, 1756 ms since last AF>
<AF[179]: managing allocation failure, action=2 (0/134150656)>
<GC(179): mark stack overflow>
<GC(179): GC cycle started Thu Dec 5 16:00:27 2002
<GC(179): freed 38779872 bytes, 28% free (38779872/134150656), in 279 ms>
<GC(179): mark: 265 ms, sweep: 14 ms, compact: 0 ms>
<GC(179): refs: soft 0 (age >= 32), weak 0, final 6843, phantom 0>
<AF[179]: completed in 279 ms>
<AF[466]: Allocation Failure. need 32784 bytes, 426 ms since last AF>
<AF[466]: managing allocation failure, action=2 (1588480/134150656)>
<GC(596): GC cycle started Thu Dec 5 16:05:16 2002
<GC(596): freed 7924000 bytes, 7% free (9512480/134150656), in 181 ms>
<GC(596): mark: 169 ms, sweep: 12 ms, compact: 0 ms>
<GC(596): refs: soft 0 (age >= 32), weak 0, final 1200, phantom 0>
<AF[466]: managing allocation failure, action=3 (9512480/134150656)>
<AF[466]: managing allocation failure, action=4 (9512480/134150656)>
<AF[466]: clearing all remaining soft refs>
<GC(597): GC cycle started Thu Dec 5 16:05:17 2002
<GC(597): freed 18312 bytes, 7% free (9530792/134150656), in 196 ms>
<GC(597): mark: 182 ms, sweep: 14 ms, compact: 0 ms>
<GC(597): refs: soft 2 (age >= 32), weak 0, final 0, phantom 0>
<GC(598): GC cycle started Thu Dec 5 16:05:17 2002
<GC(598): freed 5544 bytes, 7% free (9536336/134150656), in 199 ms>
<GC(598): mark: 186 ms, sweep: 13 ms, compact: 0 ms>
<GC(598): refs: soft 0 (age >= 32), weak 0, final 0, phantom 0>
<AF[466]: completed in 580 ms>

68 Monitoring WebSphere Application Performance on z/OS

AF[x] indicates the xth time memory allocation failed, and GC(y) indicates the
yth garbage collection since the server region started. The % free number in
each GC trace line indicates how much free memory is available in the JVM after
the GC. If this number decreases over a period of time, it means there is a
problem in the JVM memory heap. Ultimately, the JVM keeps trying to allocate
memory and keeps failing since garbage collecting cannot recall any free
memory. This occurs when all objects in the JVM have references being held that
cannot be released,

There are two possible causes for this problem.

» One is a memory leak. This is usually an application problem, which occurs
when the application mistakenly causes some objects to be referenced and
never released.

» The other cause is that some transactions can be long-running and there is
not enough memory in the JVM for these transactions to finish and object
references to be released. This problem can be resolved by increasing the
JVM heap size. In WebSphere Application Server for z/OS, this is set in
directive JVM_HEAPSIZE=xxx in the current.env file.

You can plot a chart from the verbose GC trace for easier analysis. There is an
awk script sample provided at:

http://www-1.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TD100748

This awk script formats a trace file to a semicolon-delimited condensed file that
can be directly imported to spreadsheet tools like Microsoft Excel or Lotus®
1-2-3®.

The following chart was generated by the trace shown earlier. The chart shows
there was a JVM memory problem with the application. The problem indications
include the increasing frequency of memory allocation failures and garbage
collection, less and less memory collected by GC, and lastly, the steadily
decreasing free memory percentage in JVM. Indeed, this trace was generated by
an application with intended memory leak.

Chapter 2. WebSphere and z/OS, walking the performance path 69

http://www-1.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TD100748

140

100

120

100

o,
80 free %

GCfreed
|
freespace

Free %

60

40

GC freed - freespace

40

20
20

Time

Figure 2-17 Plotting Garbage Collection trace

2.4 Establishing the diagnosis

2.4.1 Overview

Here we introduce a general approach to troubleshooting a WebSphere
application performance problem in a production environment. The intention is to
identify the cause of the problem. The actual solution depends on the problem
itself.

Performance analysis is an iterative process, and you should be prepared to go
through the process a number of times. The correction you apply trying to
remove the bottleneck may not produce the improvements you are looking for, or
may just move you from one problem to another further down the line.

70 Monitoring WebSphere Application Performance on z/OS

zSeries Processor Model

LPAR Definitions CICS, IMS,
LPAR Processing Weight MQ, & DB2
Response
WebSphere Time
Application J L
Response Time
Network Sprayer
Response Time 4 k
CICS

WebSphere
Edge Server

Gam

HTTP
Handler Web
Container

|n
XmMmromn<om

HTTP Server
WebSphere
Plugin

e =
WAS CTL Container MQ

DB2

“»n -0

z/0S Sysplex Images 1/0 Subsystem
Response Time

N =

WLM
Management

< z/OS Transaction Time >

Number of Users,
User Think Time,
Page Rate,
Response Time

Figure 2-18 Performance monitoring - an overview
» Understand the performance expectations of your system resources and
applications.
» Take a quick snapshot view of the system

— If something is extremely out of line with experience, investigate it
immediately.

— If something is only moderately out of line, remember it and continue to the
next step.

» Other quick checks and diagnostics
See “Other quick checks and diagnostics” on page 74 for suggestions.

» Look at the logical user requests that are not meeting response time
expectations.

Chapter 2. WebSphere and z/OS, walking the performance path 71

— If the logical user request response times within WebSphere server
regions are ok, check components before server regions. This is mostly
network-related and is outside the scope of this redbook.

— If the user request response times within WebSphere server regions are
not satisfactory, examine these user requests more closely and continue.

— Map the logical user requests into WebSphere transactions. To the extent
that you can’t map user requests to WebSphere transactions, you may
need to guess and make assumptions.

— Segregate the WebSphere transactions into sets of good and bad
transactions based on response times.

— Examine the resources used in each component of all bad transactions
and identify common features and/or anomalies.

— Form hypotheses that explain 80% of the observations of good and bad
transaction sets.

— Test these hypotheses, one by one, by gathering additional information.

» Be prepared to repeat this process when the identified problem has been
resolved.

2.4.2 Initial diagnostics

Understand the expectations

In an ideal world, you would have a detailed, documented Service Level
Agreement that has been derived from accurate capacity planning and confirmed
by detailed historical monitoring data.

Reality may be different. The means by which performance expectations may be
derived are discussed in 2.1.1, “Setting your performance expectations” on
page 28. The answer may be “I don’t know.” Be aware that the less you
understand your performance expectations, the murkier the problem will seem
and the harder it will be to identify it. At various points in the process you are
required to make a judgement.

To decide whether a number on a report is good or bad for your application with
your combination of hardware and software and your business priorities is
virtually impossible unless you have a clear understanding of what the data
means and what is acceptable in your environment.

Performance analysis has no simple point-and-click solution. The tool that can do
this for you has not yet been invented. You have to make judgements based on
experience, rules of thumb, or guesswork in order to progress. These
judgements may sometimes be wrong and lead you in a wrong direction.

72 Monitoring WebSphere Application Performance on z/OS

Quantify: Take a quick snapshot view of the system

Performance issues, especially when originated from user or management

complaints, tend to generate strong feelings, even frustrations. In such cases, the

best is not to participate in the turmoil but to gather factual information to quantify

the problem.

» If something is extremely out of line with experience, investigate it
immediately.

» If something is only moderately out of line, remember it and continue to the
next step.

The first thing one needs to check is the hardware and software environment at
the system level:

1. LPAR processing weights

This is to check that the LPAR is receiving the expected level of hardware
resources. This will need to be checked against documented norms for your
installation. It is possible that a change has been implemented incorrectly
resulting in less service to the LPAR you are interested in. There may have
been a deliberate change to assign resources to another LPAR for business

reasons.

LPAR CPU%

U}
LPAR Weights [Partition Guaranteed]

CP share [Partition maximum]

Server CPU % busy

10 20 30 40 50 60
Time (clock)

Figure 2-19 Partition view from Partition Data Report

Chapter 2. WebSphere and z/OS, walking the performance path 73

Use the RMF Partition Data Report to check the used LPAR CPU usage
against the guaranteed and maximum share available to your partition.

Figure 2-19 shows an example of LPAR CPU activity over 60 minutes, and the
guaranteed and maximum share. For intervals 35, 40 and 45 it is highly
probable that the partition is CPU-constrained to its guaranteed share
because of activity in other logical partitions. Although not an anomaly, this is
something you should remember for the rest of the analysis.

Remember that your LPAR CPU share is relative to the sum of the weights of
all partitions. As a consequence, your guaranteed share is reevaluated for
every change in the logical configuration:

— Every time a logical partition is activated or deactivated
— Every time operations update the processing weights
— Dynamically if your logical partition participates in an LPAR cluster

The Partition Data Report alone cannot tell you whether this is good, bad,
normal or not, but it can tell whether it fits your expectations.

2. CPU Queue

In the distributed world, running CPU above 50% is unusual. On zSeries,
running CPU at 90% or more is not necessarily an indication of a problem and
is, indeed, common. Even 100% is not necessarily a problem; in this case you
need to investigate further to evaluate how much queuing it causes. The CPU
Activity Report will help you.

Check the Queuing report in the CPU Report. If the queue length
substantially exceeds three times the number of CPs online in the
configuration, one workload may have a CPU delay problem. Although it may
not be a performance problem and may only affect a non-priority batch
workload, you should remember it for a later step.

3. Paging activity

a. Check the system paging level in the RMF summary report. The RMF
Summary Report indicates the system wide demand paging rate. As with
CPU, high paging is not necessarily a problem, but high paging may lead
to a CPU penalty and response time problems.

b. If system paging is indicated, then check if paging occurs at the server
region level. Check the STORAGE and PAGING sections in the workload
report for the server regions. Make sure you check the address space, not
the enclave, since the enclave will show zero values for PAGING and
STORAGE.

Other quick checks and diagnostics
» Have you followed all the recommended performance tuning guidelines?

74 Monitoring WebSphere Application Performance on z/OS

WebSphere 4.0.1 tuning recommendations can be found in chapters 9 - 10 in
WebSphere Application Server V4.0.1 for z/0S and OS/390: Operations and
Administration, SA22-7835. If using the IBM HTTP Server, tuning
recommendations can be found at:

http://www.ibm.com/software/webservers/httpservers/doc/v51/2tabcont.htm
Contention

If WebSphere has to contend for resources, its performance may degrade. To
check for some form of contention in your system, enter the z/OS command:

D GRS,C

The result will need interpretation. During the course of the residency, we
encountered a problem due to contention within RRS. Output from the
previous command was:

S=SYSTEMS SYSZATR WTSCPLX1-RESTART

SYSNAME JOBNAME ASID TCBADDR EXC/SHR STATUS
SC42 RRS 03EE 007EC788 EXCLUSIVE OWN

SC50 RRS 002A 007EBAAO EXCLUSIVE WAIT
SC52 RRS 002A 007EAD90 EXCLUSIVE WAIT
SC48 RRS 03EF 007EB8BO EXCLUSIVE WAIT

NO REQUESTS PENDING FOR ISGLOCK STRUCTURE
NO LATCH CONTENTION EXISTS

Systems SC50, SC52 and SC48, where we were running our WebSphere
Servers, were waiting for system SC42 to release a lock.

WLM definitions
See 2.2, “Workload Manager controls” on page 33.
Environment Variables in current.env for each server instance

These may also be inspected by checking the STC output. Detailed
descriptions can be found in WebSphere Application Server V4.0.1 for z/0OS
and 0S/390: Assembling J2EE Applications, SA22-7836.

— JVM_HEAPSIZE - This is the Java heap size. It is only worth checking if you
know what the value should be. This needs to be big enough for the
application to run without Garbage Collection becoming too much of an
overhead and small enough not to present too big an overhead to the z/OS
image. There is no rule of thumb. The recommendation is to use the
default.

— MAX_SRS and MAX_SRS may constrain the maximum number of server
regions that can be started by WLM. A reasonable MAX_SRS starting value
is three times the number of CPs available in the z/OS image.

Still, MAX_SRS should be at least as large as the number of different service
classes that might be used by transactions run in the server as explained
in, “Managing the number of application server regions” on page 33.

Chapter 2. WebSphere and z/OS, walking the performance path 75

http://www.ibm.com/software/webservers/httpservers/doc/v51/2tabcont.htm

JAVA_COMPILER - Ensure that this is not set.

JVM_DEBUG - Ensure this is not set.

TRACEALL - Set to 0 or 1 (0 preferred). If set to 1, note that tracing to
SYSPRINT causes a much bigger overhead. This can be avoided by setting
TRACEBUFFLOC=BUFFER

TRACEBASIC - Ensure this is not set.

TRACEDETAIL - Ensure this is not set.

» Some configuration settings defined in the SMEUI are stored in DB2, but not
reflected in current.env. Check that:

Production server is setto YES.
Debugger allowed is set to NO.
Server region SMF Activity Records is not activated.

» Check for unnecessary tracing. Turn off unless required.

Component tracing

To find out which component trace options are active, issue this MVS
command from a console or SDSF:

/D TRACE,COMP=ALL

The output typically consists of a number of pages. Check that all traces
are either MIN or OFF unless there is a definite requirement to the contrary.

The entries for WebSphere Application Server will look something like this:

SYSBBOSS ON HEAD 18
ASIDS *NOT SUPPORTED*
JOBNAMES ~ *NOT SUPPORTED*
OPTIONS MINIMUM
WRITER BBOWTR

To turn tracing off for any given component, use this command:
TRACE CT™,0FF,COMP=XxXXXXXX
where xxxxxx is the name of the component.

JRAS tracing - set in the file identified by com.ibm.ws390.trace.settings
in the jvm.properties file for the Server Instance.

To turn all JRAS tracing off, specify:
*=all=disabled

JDBC tracing - is turned on and off by entries in the file identified by the
DB2SQLJPROPERTIES environment variable, which is in current.env for the
Server Instance by the SMEUI. For example:

Any lines starting with the pound sign '#'

76 Monitoring WebSphere Application Performance on z/OS

are comments. Please see the DB2 for 0S/390

Application Programming Guide and Reference

for Java for the description of these settings.
#

DB2SQLJSSID=DB4B

DB2SQLJATTACHTYPE=RRSAF

DB2SQLJMULTICONTEXT=YES

DB2CURSORHOLD=NO

The following items are for connection pooling.
db2.connpool.max.size=5
db2.connpool.idle.timeout=600
db2.connpool.connect.create.timeout=0
#DB2SQLJPLANNAME=DSNJDBC
#DB2SQLJ_TRACE_FILENAME=/tmp/mytrc

JDBC tracing is activated by setting variable DB2SQLJ_TRACE_FILENAME to any
value. When the line is commented out, tracing is disabled.

— SMF record 92 subtypes 10 and 11

SMF type 92 records provide information about HFS activity. Subtype 10 is
written at file open and Subtype 11 at file close. Given that WebSphere will
require a lot of HFS file open and close activity as part of normal
operation, collecting these subtypes is likely to impose a significant
overhead.

» Check your joblog for CEEDUMPs or SVC dumps.

» Hardware faults - There will usually be indications in SYSLOG in the form of
error or warning messages if there is some kind of hardware fault.

» Check your WebSphere error log for any indications of failures. If WebSphere
is experiencing abends, the error recovery (the restart of a server region) will
severely impact performance. You may also find that the scheduling
environment status becomes STOPPED, which will prevent new server regions
being started. The status of the APPLENV can be checked by:

D WLM,APPLENV=<APPLENV name>

If you don’t know the name for a given application server, try displaying all the
APPLENVs on the system:

D WLM,APPLENV=*
To reset the status of a given APPLENV:
V WLM,APPLENV=<APPLENV name>,RESUME

Note that this may not always be sufficient to restart a failing server. If you are
in a situation where a control region has started, but has failed to start a
server region due to a stopped applenv and resuming it does not cause a
server region to start, you may have to restart the affected control region.

Chapter 2. WebSphere and z/OS, walking the performance path 77

It is important to try to understand what is causing the abends and to resolve
the problem. Problem Determination is not covered in this redbook. Refer to
WebSphere for zZOS V4 Problem Determination, SG24-6880.

2.4.3 Where does it hurt?

Now that you have an overview of the system behavior, let’s check the
WebSphere workload. Whenever possible, try to quantify the characteristics of
the workload:

» Throughput, expressed in transactions per second obtained from the
workload report

» CP usage, both total CPU% from the Summary or CPU report, and
WebSphere applications from APPL% in the workload report

» Response time, either AVG from the Workload report, or preferably 90th
percentile evaluated from the response time distribution report

Figure 2-20 shows two typical examples of what you should expect. On a z/OS
production system, total CP usage is typically in the range 90 to 100%. This is
not a problem. Note that all CPU percentages have been normalized to reflect
the capacity of the whole sysplex as explained in 2.3.2, “RMF reports” on
page 39.

78 Monitoring WebSphere Application Performance on z/OS

100

90

80

70

60

50

CP % Busy

40

30

20

| | cP APPL % 50 || CPAPPL%
—— ——

CP % Busy
——

CP % Busy

CP % Busy
—(—

40 |

|
|
|
|
|
|
|
|
Tran resp Time (sec)
Tran resp Time (sec)

0.5

Transaction rate per second Transaction rate per second

Figure 2-20 CP usage, response time, and throughput

In both examples, the workload CP APPL% grows almost linearly with the
transaction rate. This is what should be expected when no problem is present.
Although visibility may vary with the length of the measurement interval, it is very
likely that in case of a performance issue CP usage and throughput will not
correlate in a linear fashion.

Graph [1] in Figure 2-20 illustrates a no-problem situation. The system behaves
as expected in the range observed, even though the amount of CPU resource
used may not meet your expectations.

The 90th percentile response time remains sub-second until the workload CP
usage reaches 90%, where there is an important increase. This is normal.

Graph [2] illustrates a typical throughput problem.

The knee of the response time curve appears long before the APPL% CP usage
reaches 90%. More investigation is required to determine the cause of the
problem.

1. Check the Workload Manager definitions. Other workloads running on the
sysplex and competing for CP resource may take precedence over
WebSphere applications. If this is by mistake, change the WLM settings. If

Chapter 2. WebSphere and z/OS, walking the performance path 79

this is desired, WLM is enforcing business priorities as defined and it is no
longer an issue that has a technical solution.

2. One resource, other than the CP resource, is constrained when the workload
increases. It may be another z/0OS-managed physical resource (I/O or
storage) or a logical resource. If a logical resource, it may be within the
WebSphere infrastructure, within another z/OS component (DB2, CICS, IMS),
or within the application itself.

Figure 2-21 illustrates another practical example using a WebSphere application
workload running dedicated on a single z/OS image. It comes from one of our
test and was run on partition SC48 with 2 online CPs (hence, the 200% on the
CP% busy axis) on zSeries model 1C8.

200 T T T T T 4
175 F——-1—- - - -~ e === e e R			
150	— —1— — — — — S [T s L4 3		
		.	
125 | RTavg |- - - -J1_-_-___ L . _ 8
- ! ! s &
> ---
g RT 90% LA SR 2
o e +' I [=
< 100 R e R e B - 2
;_ CP APPL % ‘ i ‘ ‘ F
(&) C_._ | | | g
P % Busy I I I S
cr 4 Y A o ol F
| | Jj‘_\
| |
50 F-—-1-———“—+ff-——A4-—————————+——————f - — — F****ﬂ**ft**** 1
| | e |
| I R |
I Ll I I
25 - ¢ e e ==
B | | |
- ul | | |
g -D"'-? | | | |
0 | | I I I I I I I 0
3.47 13.87 2573 26.42 29.96 32.88 34.02 36.25 37.58
Transaction per second

Figure 2-21 CPU% and response time versus throughput
It shows what you should expect from such an analysis for a WebSphere
workload, when no memory problem is present:

» The CPU usage from APPL% plots in a linear way with the throughput. In the
above example, we used a linear regression with a 0.99 R-square.

When the workload APPL% does not plot in a linear fashion, this is usually an
indication of a performance problem.

80 Monitoring WebSphere Application Performance on z/OS

» The response time does NOT plot linear. It slowly grows up to a point where it
brutally jumps. The knee of the curve indicates the scalability limit of the
workload given the current logical and physical configuration.

In this example, the knee of the response time curve appears just above 32
transactions/second while the APPL% is approximately 110% and the total LPAR
CPU% is 140%.

From the graph in Figure 2-21 on page 80, we can deduce that:

» There is a response time problem above 32 transaction per second.

» It is not related to a CPU usage into the WebSphere application server.

» Itis not related to a CPU queuing problem at the server level since the server
has not reached the LPAR guaranteed share.

» It is most likely that we do not have a memory problem.
Another indicator that may prove useful is the average CP usage per transaction.

It may be expressed in various unit. In this document we will use the number of
milliseconds of CP per transaction.

200

40

75— ——————————-

1L e e Mo I

R e i e el

® CP APPL % ~
10011 O CP%Busy [--—-—---—-—-—+4--—~"- Rl et 20
W CP APPL/tran (ms)

CP %

millisecond of CP per Tran (from APPL%)

0 10 20 30 40

Transaction per second

Figure 2-22 CP time per transaction

Chapter 2. WebSphere and z/OS, walking the performance path 81

Under normal circumstances the average CP millisecond per transaction should
be nearly constant across the throughput range, as shown in Figure 2-22. A
significant variation is usually an indication of a performance problem.

You can quantify the CP per transaction using three methods, the only important
point being that the interpretation of the numbers should be kept consistent with
the method chosen:

» The workload CP APPL%, that is, considering only the workload reported in
the enclave, which includes application CP time in WebSphere and in any
subsystem (DB2, MQ, IMS or CICS) called on behalf of the transaction.

» The workload CP APPL% plus the WebSphere server address spaces. The
time will then reflect variations when additional servers are started/stopped
because of the Application Environment or when servers are recycled. It will
also show the time incurred because of the Garbage Collector.

» The total CP time, that is, the workload CP APPL% plus the WebSphere
server address spaces plus the apportioned uncaptured CP time. Although
this is the gross value preferred for cost calculations, it may not be the best
one to use for performance analysis.

Once the performance problem is qualified, you can follow the path to the next
step. We suggest three specialized paths:
» Do you suspect a memory leak or a heap problem?

If CPU consumption in the server address space (not the application
environment) is higher than expected, go to 2.4.4, “Check for memory
problem” on page 82.

» Are you experiencing a delay problem?

If response time gets significantly worse (getting to the knee of the curve) as
you apply more load without using available CPU, go to 2.4.5, “The delay
pain” on page 83.

» Do you consume more CPU than expected?

If CPU utilization seems higher than expected for the current transaction rate,
go t0 2.4.6, “The CPU pain” on page 85.

2.4.4 Check for memory problem

Although it should never happen in a production environment, a memory leak is
one of the first issues you should investigate if you have any suspicion. There are
two reasons for that approach:

» A memory leak will induce both CPU and delay problems. Unless you have a
specialized tool described in Part 2, “WebSphere performance tools” on

82 Monitoring WebSphere Application Performance on z/OS

page 107, reporting values will be distorted by the problem and you will be
unable to follow a performance path.

» A memory leak affects the server region address space, hence the availability
of the WebSphere infrastructure.

Run a garbage collection trace

If you suspect a memory leak, you may first wish to run a verbose GC trace as
explained in 2.3.5, “Garbage Collection (GC) trace” on page 67.

» If the garbage collection analysis confirms a memory leak, there is very little
that can be done in the production environment. Send the faulty application
back to development for correction.

» Check for correct Java heap size. To do so, check the percentage of time
spent in GC processing. A good rule of thumb is that you should spend less
than 5% of your time in Java GC processing.

Select a GC cycle after your application has run long enough to reach a
steady state. Repeat this test for a number of GC cycles after that.

— Locate the time since the last allocation failure for this GC: “YYYY ms
since last AF”.

— Locate the time it took to complete the GC processing: “completed in XXX
ms”.

— Estimate the % of time in GC processing:

* If GC processing is less than 5% of the time, then your heap size is OK.
"completed in XXX ms" / "YYYY ms since last AF" < 5%

* If you are spending 5% or more of your time in Java GC, increase your
heap size. Then check your Java GC activity again. Note, however,
that if you are on a storage constrained system, increasing the Java
heap to reduce GC overhead may result in more paging.

2.4.5 The delay pain

Check requests not meeting response time expectations

If the logical user request response times within WebSphere server regions are
OK, check components before server regions, mostly network-related
components.

If the user request response times within WebSphere server regions are not OK,
examine these user requests more closely and continue.

» Map the logical user requests into WebSphere transactions. To the extent that
you can’'t map user requests to WebSphere transactions, you need to guess
and make assumptions.

Chapter 2. WebSphere and z/OS, walking the performance path 83

» Segregate the WebSphere transactions into sets of good and bad
transactions based on response times.

» Examine the resources used in each component of all bad transactions and
identify common features and/or anomalies.

» Form hypotheses that explain 80% of the observations of good and bad
transaction sets.

» Test hypotheses, one by one, by gathering additional information.

One hypothesis could be that the code is written badly. Do not attempt to use
profilers in production. Send the code back to a test system for profiling.

» Then do it all again.

Is the delay in the WebSphere application or somewhere else?
» Apply enough load to drive up the response time.

Work your way down the transaction path until you reach a place where
response time is good. Using this approach, you can locate the source of your
delay.

In the RMF Monitor | Workload Activity report, check the response time in the
Application Environment for your WebSphere application.

— If the server region response time is good, you probably have a delay in
the network. Fix any network problems and if you still have performance
issues, start the diagnosis process again from the top.

— If you are storing data in DB2, CICS, or IMS, check your response time
using the appropriate database monitor (DB2PM, CICS statistics, IMS
pars). See 2.3.3, “DB2 SMF records” on page 54 for an example of
DB2PM.

— If the database response time is also bad, do normal database tuning to
improve the response time. Then, if you still have performance issues,
start the diagnosis process again from the top.

— If the server region response time is also bad and the database response
time is good, you have a delay in the server region. Go to the next step.

» Collect SMF 120 interval records to help locate the delay.

To enable this record, select “Write SMF Interval Records” in the SMEUI. You
also must enable collection of this record in the SMFPRMxx PARMLIB
member.

Looking at a summary view of your SMF 120 data, you can see what beans
and methods are experiencing poor performance. You may need help from
your application developer to understand the cause of the problem.

84 Monitoring WebSphere Application Performance on z/OS

In some cases, SMF 120 data will not provide information that is low-level
enough to isolate the problem. For example, activity in servlets, JSPs, and
regular Java classes called by these servlets and JSPs is accumulated under
method, dispatch, bean, RemoteWebAppBean.

2.4.6 The CPU pain

Are you consuming CPU in the WebSphere application server?

>

>

Collect RMF Monitor 1, including a Workload Activity Report.

Check if the WebSphere application is really the source of your CPU activity,
or if you are consuming CPU somewhere else.

Locate the APPL% value for the Application Environment associated with
your WebSphere application. Calculate the CPU cost per transaction.

Compare the WebSphere APPL% value with the APPL% for the whole
system and with the APPL% value from other report classes on the system.

Check the system uncaptured time for any unusual value.

If the problem is really in the WebSphere application, continue to the next
step.

Collect SMF 120 interval records to help locate the beans and methods with
lots of CPU activity.

— Select “Write SMF Interval Records” in the SMEUI if not already enabled.

— Looking at a summary view of your SMF 120 data, you should be able to
locate which beans and methods are experiencing poor performance. If
you are not familiar with the application, you may need help from your
application developer to understand the cause of the problem. Remember
that these records only report on elapsed time, so beans with calls to DB2,
CICS, or IMS might show long elapsed times though they only make a
small contribution to the CPU consumption in the server region.

— In some cases, SMF 120 data will not provide information that is low-level
enough to isolate the problem. For example, activity in servlets, JSPs, and
regular Java classes called by these servlets and JSPs is accumulated
under method, dispatch, bean, RemoteWebAppBean. For lower-level
analysis of where you have delays, some other tool may be needed.

— In some cases it may be necessary to profile your application. This is
something that should not be done on a production system; send the
application back to development for further testing. Check WebSphere
Studio Application Developer or other Java profiling tools, available from
IBM or other vendors. At the time of this writing the Jinsight profiling tool
can be obtained from the IBM AlphaWorks Web site. For more information,
see:

Chapter 2. WebSphere and z/OS, walking the performance path 85

http://www.alphaworks.ibm.com/formula/jinsight

Check the technical Sales Library Web site (Techdocs) for a white paper
on WebSphere for z/OS application debugging and profiling. See:

http://www-1.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100250

86 Monitoring WebSphere Application Performance on z/OS

http://www.alphaworks.ibm.com/formula/jinsight
http://www-1.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100250
http://www-1.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100250
http://www-1.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100250

The ITSO test environment

In this chapter we describe the environment under which we ran our performance
tests, and the examples that we used to exercise the available monitoring tools.

© Copyright IBM Corp. 2003. All rights reserved. 87

3.1 Hardware and software configuration

Our servers, applications, and network access were configured for high
availability and load distribution, in a manner similar to that which we might
expect to find in a production environment. In addition to this, we had to make
provision for:

» A server to generate scripts and feed them into the WebSphere servers
» Servers on which the application monitoring tools ran

The configuration was designed in accordance with all the high availability
principles described in the redbook Enabling High Availability e-Business on
zSeries, SG24-6850.

3.1.1 The sysplex configuration

The three systems we used in our performance tests were all logical partitions in
a 2064 zSeries server. Due to the fact that the hardware configuration changed
during the duration of the project, the reports associated with each example may
show an IBM 2064 model 1C7, or 2C7, or 1C8.

Each LPAR was allocated 384 MB of real storage. The actual number of CPs and
the processing power assigned to each LPAR (processing weights) varied during
the project, based on each test’s requirements and contention with other
concurrent projects.

88 Monitoring WebSphere Application Performance on z/OS

wtsc48oe.itso.ibm.com

LPAR SC48
MS 2000 Sysplex Dist. | CICS|
WebSphere
WebSphere
Edge Server Runtime DB2 .

edgeplex.itso.ibm.com ‘

wtsc43oe.itso.ibm.com

l haplex1.itso.ibm.com ‘
I

10.1.6.x

LPAR SC50

Sysplex Dist. | CICS|

WebSphere Studio
Workload Simulator

MS 2000
LPAR SC43 HTTP Server with WebSphere T | .
WebSphere Plugin Runtime I T

9.12.6.x LPAR SC52
R AR e T Sysplex Dist. | CICS|
WebSphere o
RS/6000 F50 RS/6000 F50 MS Win2000 MS Win2000 Runtime
AIX 5L o AIX 5L _ Introscope ———
Tivoli Monitor | == WSAM Enterprise Server

Figure 3-1 The ITSO configuration used

The following hardware and software components are relevant for the high
availability of WebSphere for z/OS. See Table 3-1 on page 90 for the release
levels of the products we used.

» Coupling Facility - Two external Coupling Facilities (CF) are installed.

» Open System Adapter - For networking connections, we used two Open
System Adapter (OSA) adapters.

» WebSphere Application Server V 4.0.1 for z/OS.
» TCP/IP with Sysplex Distributor.

» Resource Access Control Facility (RACF) uses a sysplex-wide shared
database.

» Resource Recovery System (RRS) is used for two-phase commit.

» Automatic Restart Manager (ARM) is set up to start all necessary
components on the same system in case of component failure. If the entire

Chapter 3. The ITSO test environment 89

z/OS image fails, ARM restarts DB2 and the WebSphere Daemon and
System Management address space on another system to release the locks.

» Workload Manager (WLM) is set up in goal mode.

» Lightweight Directory Access Protocol server (LDAP) is set up to run in
sysplex mode and in TDBM mode.

» DB2YV 7.1 runs in data sharing mode.
» CICSV22.

A detailed description of the setup of each of these components is available in
the redbook Enabling High Availability e-Business on zSeries, SG24-6850.

Table 3-1 Product levels used

Product name Release
z/0S V1.3 at RSU0208
WebSphere V4.0.1, level W401400

or level W401407
DB2 V7.1 at RSU0208

JDBC driver at UQ69569 level
CICS V2.2
CICS Transaction gateway V5.0

The setup of the WebSphere Application Servers is shown in Figure 3-2 on
page 91. Our test sysplex comprised three z/OS instances named SC48, SC50
and SC52.

WebSphere Application was at maintenance level W401400, as shown in
Example 3-1. The information is printed on the log when the server is started.

Example 3-1 WebSphere 4.0.1 maintenance level

BB0JO011I JVM Build is "J2RE 1.3.1 IBM 0S/390 Persistent Reusable VM
build hm131s-20020723 (JIT enabled: jitc)".

BBOU02451 CURRENT CB SERVICE LEVEL IS build Tevel W401400 release
cbh401_serv date 09/19/02 16:31:13.

90 Monitoring WebSphere Application Performance on z/OS

LPAR SC52
LPAR SC50
LPAR SC48
xxE SRVA Naming/IR Daemon
xxT SRVA Sys Mgt LDAP | |

Figure 3-2 WebSphere Application setup at ITSO

The set of WebSphere servers had different names depending on which
monitoring tool was being tested at the time, so we describe them here using
generic names. We had two servers running in the sysplex, named xxESRV and
xxTSRV.

Table 3-2 WebSphere servers in the configuration

z/OS Image Server Name | J2EE Application
SC48 xxESRVA elTSO
xXTSRVA PRR
Trade2
SC50 xXESRVB elTSO
xXTSRVB PRR
Trade2
SC52 xXESRVC elTSO
xXTSRVC PRR
Trade2

Chapter 3. The ITSO test environment 91

Each WebSphere server has three instances, one on each z/OS image, all
named according to the same convention. Thus the three instances of xxTSRV
were xxTSRVA on SC48, xxTSRVB on SC50, and xxTSRVC on SC52.

The xxESRYV servers ran workloads called elTSO and PRR, while the xxTSRV
servers ran a workload called Trade?2.

Table 3-3 WebSphere server name for each monitor

Monitor XX Server Name J2EE
Prefix Application
Introscope IN INESRVA, INTSRVB, INTSRVC elTSO
INTSRVA, INTSRVB, INTSRVC PRR
Trade2
PathWAI OoM OMESRVA, OMESRVB, OMESRVC elTSO
OMTSRVA, OMTSRVB, OMTSRVC PRR
Trade2
WebSphere WS WSESRVA, WSESRVB, WSESRVC elTSO
Studio
Application WSTSRVA, WSTSRVB, WSTSRVC PRR
Monitor Trade2

The workloads were developed by IBM for test purposes, and are designed to
exercise a wide variety of WebSphere functions, including access to CICS and
DB2. These workloads are further described in 3.1.3, “ITSO test workloads” on
page 96.

Depending on the purpose of the test, the number of server regions was adjusted
using the MIN_SRS and MAX_SRS parameters. Each instance had between two and
eight server regions to do its work.

In addition, each z/OS also ran instances of the usual WebSphere support
servers: Daemon, Systems Management, LDAP, Naming, and Interface
Repository.

3.1.2 Network access

Clients

On the client side, the requirement was to permit load distribution across the
server instances, while ensuring that:

» The right server was selected for eITSO or Trade2 or PRR.

92 Monitoring WebSphere Application Performance on z/OS

» Any required affinity was preserved, bypassing the load distribution while the
client needed to communicate with a specific server instance for the duration
of a session.

To achieve this, we set up the network access to the WebSphere sysplex as
shown in Figure 3-3 on page 93. We used a combination of the following to
provide the necessary mixture of availability and load distribution:

» Sysplex distributor on z/OS
» The IBM HTTP Server running under Windows 2000 on a PC 300® PL
» The WebSphere Edge Server, also on a Windows 2000 PC 300 PL

Sysplex
Y.
elTSO elTSO elTSO
Instance Instance Instance ;
Trade2/PRR Trade2/PRR Trade2/PRR
Instance Instance Instance
SC48 SC50 SC52
1
HTTP Server HTTP Server
+ WAS Plugin + WAS Plugin
Win 2000 Win 2000
]]
WebSphere WebSphere
Edge Server Edge Server
Win 2000 Win 2000
SC43
WSWS
z/0S

Figure 3-3 Network access from clients
The way it works is as follows:

SC43 is a z/OS system running WebSphere Studio Workload Simulator
(WSWS), which executes browser scripts and sends them across the network to
the desired target server. We used WSWS to simulate up to 1000 browser clients
accessing the WebSphere applications.

The WebSphere Studio Workload Simulator scripts are all configured with the
same server name, edgeplex.itso.ibm.com, but use different TCP port numbers

Chapter 3. The ITSO test environment 93

to distinguish between applications: elITSO and Trade2 or PRR servers. For
example, we might have the xxTSRV instances all listening on port 7070 and the
xXESRYV instances all listening on port 7080.

SC43 /etc./hosts file maps edgeplex.itso.ibm.com to the cluster address of the
WebSphere Edge Servers. Therefore, all requests sent out by WebSphere
Studio Workload Simulator go to the active WebSphere Edge Server instance. In
a high availability configuration such as this, only one WebSphere Edge Server
instance responds to the cluster address while the other simply monitors the
availability of its partner.

WebSphere Edge Server is configured to forward all packets for the cluster
address, and the TCP ports for which it is configured, to one of two HTTP
servers. Thus, all HTTP requests from WebSphere Studio Workload Simulator
reach an HTTP Server, where the TCP connection is terminated.

The clever bit comes in the plug-in running in the HTTP Server. The plug-in’s job
is to inspect all incoming requests and to determine whether to give them to the
local HTTP Server, or to forward them to another server, in this case WebSphere
on z/OS. The plug-in is set up to work as follows:

» Incoming requests are identified by target port number alone. The port
number is used to determine which of the two servers the request must be
sent to.

» The other check that the plug-in makes is to look for the JSESSIONID keyword
in any cookie. If this keyword identifies a particular WebSphere server
instance, it indicates a session affinity and this request goes to that instance.

So, if there is an affinity the request is sent (now on a new TCP connection) to an
IP address that identifies a server instance uniquely. In our case we used a static
VIPA defined on each TCP/IP stack.

If there is no affinity, the request is sent to an IP address that represents the
Sysplex Distributor. We set up SC48 as the primary distributing stack, so the
request goes there first. SC48 identifies which z/OS instances can service the
request—all of them, because all have applications listening on the appropriate
ports—and uses WLM to make a decision about where the connection should

go.

Note that, at the time the tests were run, Sysplex Distributor could only distribute
four ports per target IP address (distributed VIPA). Since we had three tools to try
out and two servers for each tool, we required at least six ports. Therefore, we

94 Monitoring WebSphere Application Performance on z/OS

defined one distributed IP address for the elTSO servers and one for the
Trade2/PRR servers.

Note: This restriction is to be lifted by the fix to PQ65205, which increases the
number of ports from 4 to 64.

In its way back from WebSphere, the response to the HTTP request goes back to
the HTTP Server, where it is passed through back to WebSphere Studio
Workload Simulator without any further processing.

This setup differs from the way it would usually work in production. In real life, the
incoming requests would be distinguished by URI and the plug-in would translate
specific portions of the URI to the appropriate port numbers. Thus, the context
root in the URI could determine which WebSphere server would handle the
request. We did it this way to make it easier for Workload Simulator to drive the
traffic patterns needed.

Some of the most important definitions we used to set up the network access can
be seen in Appendix B, “Configuration files” on page 291. These include the
HTTP server definitions and the z/OS TCP/IP definitions.

Monitoring tools

To keep the test network “clean” and isolated from other work, such as our own
TSO access and other projects’ traffic, we ran two separate TCP/IP stacks in
each z/OS instance, as shown in Figure 3-4.

Chapter 3. The ITSO test environment 95

"Test" .| "Production"
Network Network
\ﬁ‘{o g
TCPIPA \a\«ﬁe TCPIP
N\
Workload) ’ ‘-‘
Simulator E—!
L J W
Application Monitors
User Workstations

Figure 3-4 Network access from monitors

All the application monitoring servers, as well as the workstations used to access
them via browsers, were connected to the production side of the network.

Since WebSphere is a well-behaved UNIX System Services application, it
connects to both stacks in the common INET environment, and we were able to
access the servers from both the Workload simulator test network and from the
application monitors on the production network. Using two stacks in this manner
is not always easy, or even possible. For example, WebSphere issues a
gethostid() call to USS to obtain its IP address. This address is sent to the
WSAM monitor, which then sets up further TCP connections to it. We had to
make sure that the address obtained came from the production stack—the test
stack addresses are unreachable from the production network.

3.1.3 ITSO test workloads
We used the following applications to create workloads for our tests:

» Trade2
» elTSO (based on a modified version of eRWW)
» PRR

96 Monitoring WebSphere Application Performance on z/OS

The eRWW and PRR workloads are IBM internal workloads. They were
developed for test purposes, and are designed to exercise a wide variety of
WebSphere functions including access to CICS, IMS, MQSeries®, and DB2.

Trade2

The Trade application models an online brokerage application, providing
Web-based services such as login, buy, sell, get quote, and more. It uses a
servlet to drive a session EJB that calls a data bean that uses
container-managed persistence to return data to a JSP that generates the HTML
returned to the user; the general flow is illustrated in Figure 3-5.

[— Account
CMP
/ \A Trade » Portfol
ortiolio
Servlets ||| § ﬁ CMP'
HTTP PN o & 8'
q 2] W
Client I e— / w g =) Quote Trade
§ 8 CMP Database
\// Trade
JSPs Buy v\/
in CMP
Session Entity EJB
Trade EJBs Persistance

Figure 3-5 Components and flow withinTrade2

Trade2 requires that users log in before trading, and uses standard Java
functions to create and manage session objects.

The Web container for Trade2 specifies HTTP sessions, so WebSphere will
create a JSESSIONID cookie. The Web container also specifies that the session
objects are not to be saved to DB2, so session affinity to the same WebSphere
application server region is required. To accomplish this, WebSphere adds a
ClonelD to the end of the JSESSIONID cookie so that requests can be routed back
to the same system they originated from.

For the tests, we used a special Trade2 servlet called TradeScenarioServlet. This
facility was created explicitly for use by workload generation programs, and is
designed to be called repeatedly. On each call it randomly calls one Trade2
function. If no session is yet established, then it calls the logon function.
Subsequent calls use that session until the servlet randomly decides to log off
the user.

Chapter 3. The ITSO test environment 97

More information on the Trade2 workload is available at:

http://www-3.ibm.com/software/webservers/appserv/wpbs_download.html

PRR

The PRR application was developed by IBM. It is a front end to specialized
workloads.

It was used to drive a stateless EJB session bean to call a CICS transaction,
using the JCA CICS connector, CICS TG 5.0, to read or write DB2 data. The EJB
then returns the commarea data to be formatted by a JSP.

elTSO

The elTSO application is a modified version of the eRWW application, a
workload that was developed by IBM to model an order management system.

3.1.4 WebSphere Studio Workload Simulator

WebSphere Studio Workload Simulator was used to drive the applications to load
the system and test the monitoring techniques and tools. The tool captures the
output of interactions between a Web browser and a server, then replays those
same interactions later.

WebSphere Studio Workload Simulator contains two main components, the
controller and the engine, which are described as follows:

» The controller

This component runs on a workstation and is used to capture and modify the
test script. Test scripts are FTP’ed to the engine machine for execution there.
During execution, the controller connects to port 3000 on the engine machine
to display a monitor of the test progress.

» The engine

This component runs on a driving system and executes the script to drive the
workload. In our implementation of WebSphere Studio Workload Simulator,
we ran the engine in ZOS UNIX System Services.

When running WSWS, the controller communicates with the engine (the driving
system) that is actually running the tests. The controller presents a window that
allows you to monitor the test progress; refer to Figure 3-6 on page 99.

98 Monitoring WebSphere Application Performance on z/OS

http://www-3.ibm.com/software/webservers/appserv/wpbs_download.html

["wtsc43' Monitor - WebSphere Studio Workload Simulator

Engine name: wtsc43

Script name: sb_FME

- Cliertz - Statistics
: 430 Status:
El d time:
240 apsed time
Clients:
B fzec sent:

B f2ec received:

Average response Hme:

Wweb enors

Fage elements /second:

Running
00:05:07
240
0.my
0.165
35.334
1.579

- Consale meszages

Figure 3-6 WebSphere Studio Workload Simulator

The monitor screen contains a section called “Page elements/second”. This
graph shows the number of Web pages per second being returned to
WebSphere Studio Workload Simulator over time.

3.2 Examples of performance problems

12/01/2002 175616 IWwWLOODSY| Page elements = 3085 -]
12/01/2002 175616 PwWLOOBD! Page element throughput = 30,257 /s
12/01/2002 175616 IwWLOOSY Tranzactions = 4446
12/01/2002 176616 PWLOOBD! Tranzaction throughput = 14,807 /o
12/00/2002 175616 PwWLO0SS| Metwork [/0 erors =0
12/M/2002 176BE1E IwWLO0BS! wWeb server emorz = 0
12/01/2002 176616 PwWLOORS! Num of pages retieved = 9085
12/01/2002 17:56:16 IWLODBO Page throughput = 30.257 /5
12/01/2002 175616 IWLOODBOI HTTF data read = 42 612 WB
12/01/2002 175616 IWLOOBOI HTTF data written = 4.922 MB
12/01/2002 176616 PwWLOOEDI HTTF awvg. page element responze time = 0.525
12/01/2002 175616 PWLOOEDI HTTF avg. page element response time = 0.632 [with all clients concurrently rutning]
12/01/2002 175616 =
KN —
AR | STOP I ELEAH CLOSE

To demonstrate what can be achieved with specialized WebSphere monitoring

tools, we needed some performance problems that might typically be
encountered in live customer situations. We sought advice from those with

experience in solving real production problems: developers, service personnel,
and tool vendors.

Chapter 3. The ITSO test environment

99

100

From this list of “Frequently Asked Performance Questions”, we derived a set of
test cases to illustrate the use of monitoring products.

The examples
In this section we give an overview of each performance problem retained.

Example 1: Identify a DB2 delay in an application path

Problem: A particular transaction normally runs fine, but periodically it shows
very poor response time and high system overhead. Show how to identify the
specific case or cases where the delay occurs.

The transaction retrieves data from DB2 based on a customer name or account
number. For most customers, there is only a small amount of data returned.
However, for a small number of very large customers, a huge amount of DB2
data must be retrieved, thus causing big delays.

Example 2: Not used

Problem: Originally based on identifying a JDBC application path, this example
was never developed. It somewhat duplicated example 10, and the added value
did not justify the cost of development. The example was dropped.

Example 3: Detect a memory leak

Problem: Show how to detect a memory leak. If the problem is allowed to
continue, eventually performance degrades and JVM terminates with a Java “out
of memory” error.

Example 4: Identify a CICS TS response time problem

Problem: Show how to identify a response time issue caused within CICS TS.
Show how one can determine whether the problem is in WebSphere or the CICS
Transaction Server.

Example 5: Not used

Problem: Originally based on a JDBC resource shortage, this example was
dropped. It is no longer a quantifiable performance issue since WebSphere now
dynamically allocates the resources. No measurable performance penalty could
be detected on the zSeries model used for testing.

Example 6: Isolate a DB2 problem

Problem: Show how to identify a response time problem caused by accessing a
DB2 database.

Example 7: Transaction hang or time-out
Problem: Isolate a transaction that hangs and eventually times out.

Monitoring WebSphere Application Performance on z/OS

All users are complaining about poor response time and operations needs to
determine that the application is hung waiting for a response from an external
resource (for example, MQ).

Example 8: Static pages serving

Problem: Identify that a large proportion of requests is for static contents, HTML
and GIF files rather than JSPs and servlets.

The Edge Server is not caching static files. If the usage is low, or if this can be
identified as a normal situation, then the installation may decide to leave well
enough alone. Otherwise, the WebSphere Edge Server servers could be
configured as caching proxies.

Example 9: Increased WebSphere activity

Problem: Operations detects a large increase in WebSphere activity and
overhead. Determine where this additional activity is occurring and decide if this
is a problem.

Example 10: Identify a method called with high frequency

Problem: In most cases, a transaction completes quickly, but periodically there is
a case where the transaction response time is slow and its CPU overhead is
extremely high.

3.3 Performance monitoring tools

The list of situations that we considered is shown in Table 3-4.

Table 3-4 Examples used

Example # Definition Notes

1 Identify a path within the application

Dropped

Detect a memory leak

CICS TS response time

Dropped

Isolate a DB2 problem

Transaction hang or time-out

o | N]o|lo]lps~]O]DN

Static pages serving

Chapter 3. The ITSO test environment 101

Example # Definition Notes
9 Increased activity under WebSphere
10 Identify a method called with high
frequency
11 Mixed - based on examples 1, 3, 4,7

The sequence number assigned has no meaning other than identification. It does
not imply any relative priority or logical sequence amongst the different
examples.

Using this set of examples, we show in Part 2, “WebSphere performance tools”
on page 107, how monitoring tools can help you diagnose the problem and
therefore improve the service you provide.

We must emphasize here that using additional performance monitoring tools is
not a “magic” solution to every problem. The tools provide extra information, but
you need to know how to interpret that information in the context of your own
installation. Unless you have that experience, we recommend the services of
consultants who can transfer their skills to you while advising on the best
methods of setting up performance monitoring.

Introscope

Introscope is a system management application created to help you manage
Java application performance. Introscope’s minimal performance impact allows
you to monitor and manage your applications’ performance in live production
environments.

Chapter 4, “Introscope” on page 109 briefly describes Introscope and explains
how it can be used with the above examples. For more information on Introscope,
see:

http://www.wilytech.com/solutions/index.html

PathWAI

PathWAI solutions is a suite of products that monitor the availability and
performance of the systems from one or several designated workstations. It
provides many useful reports that you can use to track trends and understand
and troubleshoot performance problems.

Chapter 5, “PathWAI solutions for WebSphere” on page 157, describes PathWAI
solutions and explains how the products can be used with the examples defined
above. For more information on PathWAI solutions, see:

http://www.candle.com/websphere

102 Monitoring WebSphere Application Performance on z/OS

http://www.wilytech.com/solutions/index.html
http://www.candle.com/www1/cnd/portal/front/0,2184,2683,00.html
http://www.candle.com/websphere

IBM WebSphere Studio Application Monitor

WebSphere Studio Application Monitor for z/OS (WSAM) enables developers
and quality assurance and data center personnel to analyze the behavior of
applications and take corrective actions to resolve problems. It provides
troubleshooting, performance monitoring, and performance analysis functions for
large-scale J2EE applications running in development and production
environments on the WebSphere for z/OS platform.

Chapter 6, “WebSphere Studio Application Monitor” on page 225 briefly
describes WSAM Application Monitor and explains how it can be used with the
examples defined above. For more information on WSAM Application Monitor,
see:

http://www-3.1ibm.com/software/awdtools/studioapplicationmonitor/

IBM Tivoli Monitoring for WebSphere Application Server

IBM Tivoli Monitoring for WebSphere Application Server on z/OS is a solution
that helps ensure the optimal performance and availability of WebSphere
application servers.

Although a chapter on this topic was planned for this redbook, general availability
of the product did not match the schedule of our project. Check our Web site for a
redbook on IBM Tivoli Monitoring for WebSphere Application Server on z/OS
coming later this year:

http://www.redbooks.ibm.com/
For up-to-date information on IBM Tivoli Monitoring products, check the Tivoli
Developer Domain Web site at:
http://www-106.1ibm.com/developerworks/tivoli/
Ultimately, this tool increases the effectiveness of an IT organization and
provides optimal performance and availability of critical Web infrastructure by:

» Providing a single point of control to enable IT organizations to understand
the health of the key elements of a Web-based environment

» Letting administrators quickly identify problems, alert appropriate personnel,
and offer a means for automated problem correction

» Providing a real-time view of performance health

» Feeding a common data warehouse for historical reporting and analysis
Obviously, WebSphere application servers are the key infrastructure pieces of an
e-enabled environment. However, IBM Tivoli provides Web infrastructure

management capabilities that extend throughout the entire enterprise. A Web
infrastructure includes not only instances of WebSphere Application Server, but

Chapter 3. The ITSO test environment 103

http://www.redbooks.ibm.com/
http://www-3.ibm.com/software/awdtools/studioapplicationmonitor/
http://www-106.ibm.com/developerworks/tivoli/
http://www-106.ibm.com/developerworks/tivoli/

also the Web servers that front-end your Web application server, databases on
the back-end, message queuing applications, ERP and CRM software, and so
on. To enable true management of the entire Web infrastructure, IBM Tivoli
provides a single monitoring technology that integrates the management of all
these disparate applications.

IBM Tivoli is also focused on driving additional value from your IT investments
beyond simply managing and monitoring the various software, hardware, and
network configurations that are deployed. This means providing the ability to
correlate events and alerts coming from the resources in your IT environment. It
also means using the data collected by your monitoring tools to provide feedback
and insights into how your IT systems are running and how they can be used to
improve your business processes.

Figure 3-7 illustrates the total value proposition of an IBM Tivoli monitoring
solution.

Business Impact Management Deliver Business Impact

« Align IT management with business objectives Managemem

S DL B0 _ + Integrate IS management with
+ Improve cost efficiency via proactive IT planning X

« Turn data into business information business processes and

objectives, and policies
+ Manage transactions

> Redefine Quality
+ Ease-of-use, time-to-value,
and complete user experience
+ Target roles and processes
+ Leverage current success

Systems and Applications Monitoring

+ Proactively identify, notify, and cure problems at their source

« Auto-discovery of critical resources Integration with IBM
« Automated problem resolution . .
* Response time analysis J * Autonomic Computlng

» e-business on demand

Figure 3-7 IBM Tivoli monitoring solution

Specific to WebSphere Application Server on z/OS, IBM Tivoli Monitoring for
WebSphere Application Server on z/OS monitors and manages the critical
components of each WebSphere Application Server instance. IBM Tivoli
Monitoring for WebSphere Application Server on z/OS deploys Resource Models
to proactively monitor an IT environment. Resource Models are combinations of
performance metrics that identify specific problem signatures; they also provide
alerting capabilities and automated task responses that can solve the problem or
prevent it from occurring. Resource Models allow for flexible thresholding, so the

104 Monitoring WebSphere Application Performance on z/OS

solution can be tailored to meet the unique needs of any environment in which it
is deployed. Resource Models also do persistency checking, that is, ensuring that
problems are chronic and avoiding the unnecessary deployment of IT staff to
investigate non-persistent system spikes or irregularities. The Resource Models
that ship with IBM Tivoli Monitoring for WebSphere Application Server on z/OS
focus specifically on:

» EJBs
— Response time
— Requests per minute
— Average concurrent
— Percent discards
» Web applications
— Response time
— Requests per minute
— Concurrent requests
— Errors per cycle
» Transactions
— Response time
— Requests per minute
» HTTP Sessions
— Active sessions
» ORB Thread pool
— Active threads
» DB2 Connections
— Wait time
— Faults
» JVM
— Memory used
» CPU Utilization
— Per Web app
— PerEJB

In short, IBM Tivoli Monitoring for WebSphere Application Server on z/0S
provides comprehensive management capabilities for your WebSphere
Application Server-based e-business environment, by:

» Ensuring the performance and availability of your application environment
including infrastructure components

» Proactively monitoring critical components of your e-business application
based on application best practices

» Minimizing the risk of outages by conducting thorough root-cause analysis

» Reducing support and maintenance costs through standardized common
administrative tasks

Chapter 3. The ITSO test environment 105

» Integration with an enterprise-wide data repository for historical reporting and
business impact analysis

» Visualization of the business impact on e-business applications in the context
of the corporate IT landscape

106 Monitoring WebSphere Application Performance on z/OS

Part 2

WebSphere
performance
tools

108 Monitoring WebSphere Application Performance on z/OS

Introscope

Wily Technology’s Introscope is a comprehensive Web Application Management
solution for managing complex Java/J2EE applications on WebSphere for
0S/390 and z/OS in live production environments, and for diagnosing a variety of
performance problems in production. In addition, Introscope also supports AlX,
AS/400®, HP-UX, Solaris, Linux/z, Linux, and Windows.

© Copyright IBM Corp. 2003. All rights reserved. 109

4.1 Introscope

Wily Introscope monitors applications with the Whole Application View™ from
two perspectives: The application’s and the infrastructure’s.

From the application’s perspective, Introscope reports on:

WebSphere server regions

e Web container service requests
e HTTP sessions

e JDBC connection pool
Java/J2EE application

* Application components including servlets, JSPs, EJBs, and any
custom classes and methods

e J2EE components such as JDBC, JMS, JTA, JNDI, JCA, RMI, XML,
and more.

JDBC driver activity down to the SQL statement level
Connectors to back-end transaction systems

* CICS

* MQSeries

 IMS

JVM

* Memory

* File l/O

* Socket I/0

From the infrastructure’s perspective, Introscope reports on:

Web server (Apache, IIS, and more)

* Number of errors

e Throughput

0S/390 and z/OS

* CPU dispatch time, wait time, process

* Major subsystems such as DB2, MQ Series, and CICS

110 Monitoring WebSphere Application Performance on z/OS

4.1.1 Introscope major components

Introscope has three major components: Agents, the Enterprise Manager, and
the Workstation.

Agents

Introscope agents collect performance metrics from the various components of
the running Java/J2EE applications, WebSphere server regions, and the
surrounding computing environment. The various agents collect their
performance metrics and report it to the Enterprise Manager.

Enterprise Manager

The Introscope Enterprise Manager coordinates performance metric collection,
historical data reporting, alerting, and presentation across all Introscope Agents.
The Enterprise Manager acts as the integration point with larger systems
monitoring frameworks (for example, Tivoli, OpenView, Unicenter, etc.).

Workstation

The Introscope Workstation is a customizable user interface that visualizes a
WebSphere application’s performance and its dependent resources. Through the
Workstation, users can set alerts on individual metrics or logical metric groups,
view performance metrics, and customize views to represent the particular
WebSphere environment being monitored.

Figure 4-1 on page 112 illustrates various Java and Environment Performance
Agents reporting metrics to the Introscope Enterprise Manager. The Enterprise
Manager is integrated with enterprise-wide systems frameworks which receive
Introscope alerts and other performance metrics.

Chapter 4. Introscope 111

Introscope Introscope
=== Workstation Agent
Real-Time, Introscope Web

Historical, & Enterprise Server Metrics

Performance
o= N 3! Alerting Manager /
\ JavaApp,SQL, :

Connectors to, CICS,

Systems Management Links < " 0 Metrics
~ fomemer
ivolilB (
Tivolill (0 | B2, WebSphers,
4: hme <~ 0S/390, Z/0S Metrics
Unicenter TNG \ Java App, SQL,

Connectors to, CICS,

ﬂ \ MQ Metrics
= DB2, WebSphere,

J2EE Application
—
i Java
< Btomence baa SINABIEE \Agent) Wetsprere |
Performance Data —
JVM
Historical
Data 2/0S

Figure 4-1 Introscope components within existing monitoring frameworks

4.1.2 Monitoring WebSphere on z/OS

Introscope uses two types of agents to collect performance metrics for
monitoring the whole application: the Java Agent and the Environment
Performance Agent (EPA).

Java Agent

The Introscope Java Agent collects performance metrics on the Java application,
WebSphere resources, JDBC, JCA and all other connectors to subsystems such
as CICS and MQ Series without requiring developers to write any additional
code. See Figure 4-2 on page 113.

The Java Agent monitors Java code running within WebSphere’s server regions.
In fact, the Java Agent itself runs within WebSphere and does not maintain an
address space of its own. The Agent can monitor any Java code, whether or not
the code is J2EE compliant, even without the source code. The ability to monitor
without the Java source is helpful when monitoring third-party toolkits such as
JCA connectors or JDBC drivers.

112 Monitoring WebSphere Application Performance on z/OS

During its installation and configuration process, the Java Agent can be tailored
to monitor key performance metrics of the particular WebSphere application.
Typically, this means monitoring the following:

» The overall response time of each HTTP request from the time the request is
dispatched by the WebSphere Request Dispatcher (see Figure 1-1 on
page 11 and Figure 1-2 on page 12) to the end of WebSphere’s processing of
the request

» The response time and throughput of each J2EE component, for example
servlets and EJBs

» The response time and throughput of each non-J2EE component, for
example Apache Struts, custom JSP tag libraries, etc.

» The response time of all subsystems such as DB2, CICS, MQ Series, IMS,
etc.

» The state of various logical WebSphere resources such as HTTP sessions,
JDBC, and other connections

» The state of various logical application resources such as shared data
caches, custom pools, etc.

» File and socket I/O
» Application memory for memory leaks

» The existence of error conditions within the application, leading to poor user
experience

Back-End » dJava
= @ Connectors Agent
Application
Components
JDBC
- - Driver
J2EE Application)
7
WebSphere
JVM

Figure 4-2 Introscope monitors application components and logical and physical
resources

Chapter 4. Introscope 113

In its normal monitoring mode, the Java Agent collects raw performance data for
a monitored component or resource over a 15-second interval, aggregates the
data over that interval, and reports the aggregated performance metrics to the
Enterprise Manager. The Java Agent gathers metrics from every WebSphere
request and response; it does not rely on sampling.

In addition to its normal mode, the Java agent can run in transaction trace mode.
In transaction trace mode, the Java Agent records specific response times of
components used by specific user transactions. This is particularly useful for
identifying performance bottlenecks in individual user transactions. While
providing a great deal more information, transaction trace mode incurs only
slightly more overhead than the Java Agent’s normal monitoring mode. Switching
between normal and transaction trace modes is controlled dynamically from the
Introscope Workstation and does not require WebSphere to be restarted. While
in transaction trace mode, the Java Agent gathers all the same data as it does in
normal mode.

In both modes, the Java Agent associates each component with the components
on which it depends. Using this facility, called Blame Technology, Introscope can
help the user quickly identify which component, among many used in a
transaction, is incurring the greatest response times. In normal mode, the Java
Agent shows how much of each component’s response time is due to other
components on average over each 15-second interval. In transaction trace mode,
the Java Agent reports how the response times of individual components are
incurred by one another within individual transactions.

The Java Agent works with an Introscope component called ProbeBuilder. The
ProbeBuilder is tightly integrated into WebSphere class loaders. As an
application’s code is loaded into WebSphere, the WebSphere class loader sends
the code to the ProbeBuilder for instrumentation. Instrumentation refers to the
process in which the ProbeBuilder inserts monitoring tracers into the code at
predefined points described in directive files. These instrumentation points are
determined through directive files supplied by Wily Technology. Optionally, users
can define their own instrumentation directives to monitor unique application
resources.

The directive files supplied by Wily Technology define instrumentation points to
monitor the following:

Java RMI

JDBC

JVM I/O

CORBA

EJBs (Session, Entity, and Message beans)
Servlets, JSPs

XML, XSL

vVvVyYVYyVvYYVYYyvYyYy

114 Monitoring WebSphere Application Performance on z/OS

JTA

JMS

JNDI
JavaMail
JCA

CICcs

MQ Series

vVVyVYyVvYVYVYYVYYy

WebSphere resources (JDBC pools, thread pools)

Optionally, users can define their own directives to monitor:

v

Application-specific error conditions
Application-specific data caches

vYyy

Any custom code down to the method level

Environment Performance Agent

Application-specific connectors that do not conform to J2EE specifications

The Introscope Environment Performance Agent (EPA) allows Introscope to
receive performance metrics from the computing environment surrounding
WebSphere. The EPA provides a mechanism to launch plug-ins that gather
metric data and report it back to the Introscope Enterprise Manager. Once
launched by the EPA, the plug-in is responsible for obtaining the raw
performance metrics and writing these metrics to the STDOUT channel
(STDOUT is analogous to z/OS SYSPRINT). The EPA reads the STDOUT and
passes the metrics to the Enterprise Manager. See Figure 4-3.

1 Launches

Web Server
Log Reader
Report Performance o
Metrics Through Stdout nvironment
Performance
Agent
_| (EPA)
Launches
Custom
Plugin

Report Performance

Introscope

_’ Enterprise

Manager

Metrics Through Stdout

Figure 4-3 The EPA launches plug-ins and receives metrics from the plug-ins via

STDOUT

Chapter 4. Introscope 115

4.1.3 Enterprise Manager

The Enterprise Manager acts as the central collector and coordinator for all
Introscope metrics. It collects performance metrics from multiple agents and
processes them according to user-defined rules. The Enterprise Manager can
generate alerts to a pager, e-mail, or systems management frameworks (for
example, Tivoli) if any application component fails to meet application
user-defined thresholds. These thresholds can be based on service level
agreements, resource utilization, or other meaningful values.

The Enterprise Manager can store metrics to a database for historical analysis
and reporting. It also prepares the raw metric data for visualization in the
Workstation.

The Enterprise Manager is a Java application and can run on any platform,
including OS/390, z/OS, AlX, AS/400, HP-UX, Solaris, Linux/z, Linux, and
Windows.

4.1.4 Workstation

116

The Introscope Workstation consists of three parts: The Explorer, the Console,
and the Console Editor.

Explorer

The Introscope Explorer shows a comprehensive list of all application
components in a tree format for drill-down problem determination. Figure 4-4 on
page 117 shows an example of using the Introscope Explorer to drill down into
the components of the application. Notice that the Explorer visually represents
component dependencies using the “Called” mechanism.

Console

Introscope’s console graphically represents performance metrics, the larger
computing environment, and dependent systems in free-form dashboards. These
free-form dashboards allow users to create console views customized to their
application environment. Figure 4-5 on page 118 is an example of a dashboard
customized for the ITSO sysplex configuration, while Figure 4-6 on page 119 and
Figure 4-7 on page 120 illustrate two dashboards as they are customized for the
ITSO sample application.

Console Editor

Introscope allows users to completely customize their dashboards in a free-form
layout to represent their environment in any manner they choose.

Monitoring WebSphere Application Performance on z/OS

uplorer - Introscope Workstation

‘Workstation Edit Manager Elements Preview Help

+— wisch2ae
- [E] wiehSphere
> #E IT50 Sample 1-1 ¢*SuperDomain®)
DL TS0 Sample 1-2 ¢*SuperDamain®)
-~ [¥]2 Java Version
%€ Launch Time
— [#]2 virtual Machine
@ FIE8B
D (= Entity
3 CustomerEntityg
(53] DistrictEntityBea
{54 HistanyEntityBeay
(54 ltemEntitvBean
(53 NewdrderEntityg
(5 OrderEntityBean
{5 OrderlineEntityBq
[StockEntityBean
[WarehouseEntityBean
ejbActivate
ejbFindByPrimarykey
3 ejbLoad
- [#]€ Average Respanse Time (ms)
W]E Interval Invacations

"Called" indicates
dependencies

3 Called JDBC

e
¢ (5] Prepared

& 5 auery
&) SELECT W_NAME, W_STREET_1, W_STREET

@ SELECT WW_MAME YW STREET_1,WW_STREET |

L€ bverage Query RoundTrp Time ms)

[IE average Query Time (ms)

:44:00

[*]

[v] [Twtsesive|...|SELECT W_NAWE, _STRE....Average Ouery RoundTrp Time (ms)=0

Figure 4-4 The Introscope Explorer is used to drill down into the components of an application

Chapter 4. Introscope 117

8 Console - Introscope Workstation

Workstation Dashboard Help

18] x]

WebSphere Sysplex Overview

Average Sysplex Response Time

I a 60 170 180 240 300 Sfill

Load Across Sysplex

I =)
400 440 40 520 560 GO0

Total Bytes In Use

I 38150 476,50 5TEIM [V62,80

Monitored Server Regions

SuperDomain|wtsc48oel...[IT... Host:IP Address = 9.12.6.33
SuperDomain|wtscd8oe|..|IT...Host:IP Address = 9.12.6.33
SuperDomain|wtsc50oe|...|IT...[Host:IP Address = 9.12.6.26
SuperDomain|wtscs0o0el...[IT... Host:IP Address = 9.12.6.26
SuperDomain|wtsch2oe|...|IT...Host:IP Address = 9.12.6.24
*SuperDomain|wtscb2oel..[IT... Host:IP Address = 9.12.6.24

wily
technology

Q>

Figure 4-5 Sysplex overview dashboard

118

Monitoring WebSphere Application Performance on z/OS

IDBC 13, 2002 11:13:48 Am

¥ Console - Introscope Workstation

Workstation Dashboard Help

18]

e @

ITSO Application Overview

e R Time Overview
4.4K;
Stalled Req D: Res;
27K =
Quick Responders CICS Reponse q i
24K i
Mid-Rage Responders
Slow Responders

SaL GC Heap Application Load JUYM IO
Displaying Top 10 Displaying Top3 il 12074

el Iy 565 005k

978 08 2 \"

652 142.7) ‘ 29 o

226 T J@ 453 302K

L e i et
03600 10:40:00 "ossn o 03500 104000 e

| Moy 22, 2002 10:41:22 AW
Figure 4-6 Overview dashboard customized for the ITSO application

Chapter 4. Introscope 119

[Console - Introscope Yorkstation LIEX
Workstation Dashhoard Help

R
% 5. CICS |] 6. Load Balancing Detail | [y’l7 VM Memory Details F] 0. Stalled Components |
[7:] 1. WehSphere SysPlex Overview i [E:]23 nsanmuca:mouemm [[2]3. Response Time Detail [_F-/.Datahase
Database Response Time
Database Monitoring
ave.
ITSO Sample App DB2
. O
o~
326 e
vy Time Waiting for Conn. Top 10 SQL Response Times (ms)
Displaying Top 10
utsesdoal...|SELECT W_N&futec50 o) ;
. WehSphere|
wscstosl, JSELECT 0_0_i o0 Sample 1-2]
= -1 JoBo|
l gL
wtscB0oe|..[SELECT 0_0_| Frepared|
Guery|
. SELECT 'W_NAME, W_STREET_1, W_STREET_2, W_CITY, W_STATE,
wtscSoel. . I3ELECT 0_D_| W_ZIP W TAX, W_YTD FROM CBIVP WAREHOUSE WHERE W_ID = 7 FOR
l UPDATE WITH RR KEEP UPDATE LOCKS:
Average Query RoundTrip Tlme {ms)
03500 108700 10300 04400 utscioe] . SELEST W_NAME TW_ST. “A¥ersfe Ulery Noonamp e (m=y=n: |
L o 21 R 2 o s £t 1
] 700 E B00 300 000 T2F

| |Mov 22, 2002 10:41:06 At

Figure 4-7 Dashboard to monitor the ITSO application’s use of DB2

The Introscope Workstation also serves as the launch point for two other
Introscope extensions: Transaction Tracer and Leak Hunter.

Transaction Tracer

Transaction Tracer helps isolate performance problems by visualizing the
components and their dependencies on individual user transactions to pinpoint
bottlenecks. Figure 4-8 on page 121 shows an example of Transaction Tracer in
use.

120 Monitoring WebSphere Application Performance on z/OS

'Transactiun Trace Yiewer - Introscope Workstation =18l x]
Workstation Trace Help

Domain | Host | Process | Agent | Timestamp | Duration(ms) | Category | Mame R
*SuperDomain® wisc52oe WilehSphere ITSC Sample . 10:17:19 392 5144 \WehSphere [DelivendDE Cantraller
*SuperDomain® jwisc52oe lwebSphere ITSO Sample .. [10:17:19.981 5730 WehSphere |/DeliveryDE Controller
*SuperDomain® wisc52oe WehSphere ITSC Sample .. [10:17:19.892 5810/\WehSphere [DelivernyDE Contraller
*SuperDomain” jwisc52oe lwebSphere [ITSO Sample .. |10:17:20.396 110WehSphere |/DeliveryDE Controller
*SuperDomain® jwisc520e lwiebSphere |ITSO Sample .. [10:17:37.088 5697 WehSphere |/DeliveryDE Contraller
*SuperDomain® jwisc520e lwebSphere [ITS0 Sample . | 5524 WehSphere |/DeliverdDE Contraller
*SuperDomain® jwisc520e lwebSphere [ITSO Sample . | 7102WehSphere |/DeliveryDE Contraller

“SuperDomain® [wisc520e -WebSphere ITSO Sampl_e 64D_DWebSphere J'DEIWENIDEC_:DI’]IFDHE[

Agent:*SuperDomain®wizci2oepvebSpheral TS0 Sample 1-1
Timestamp:11/22/02 10:17:19 EST Zoom
Duration: 5144 mz

50‘0 75‘0 10‘00 12‘50 15IDD 17|50 ZUIDD 22|50 25|00 2?|50 SDIUD 32|50 SSPD 37‘50 4OIDU 42‘50 4

C | al Req [DelivenyDEController
Senlets| DEController
SendetslspSendet
Servlets|_DEAGResults_jsp_1
JSP|_DEAGResults_jsp_1

EJB| |Del ionB
|

ﬂyﬂ MWM i il i HWM i Hﬁw (U

Component Details

Identification Performance
Type: JDBC Durgtion: 0 ms
Hame: Query Timestaimp (relative): 2918 ms

Path: JDBC|SQLPreparedQuery | 0% of total transaction time
Properties

Prepared SQL:SELECT O_C_ID, O ENTRY D, O_CARRIER_ID, O_OL_CHT, O_ALL LOCAL FROM CBIVP ORDERS WHERE O D 1D = 7 AND O_ID =7 AND O WW_|D = ¥ FOR UPDATE VWTH RR KEEP UPDATE L

Figure 4-8 Introscope’s Transaction Tracer allows the user to quickly visualize individual transactions

Figure 4-9 shows an example of the top portion of the Transaction Tracer window
listing all individual transactions that exceed a performance threshold. The user
selects a transaction from the list to see a complete breakdown of all its
components and their performance characteristics.

| Host | Process | Agent | Timestamp | Durationims) | Category | Name
wischloe WiehSphere [TSO Sample .. 10:17:19.392 4144 WehSphere [DeliveryDECantraller
wisch2oe WehSphere TS0 Sample ... [10:17:19.981 5780 \WehSphere (DeliveryDECantroller
wizchloe WWiehSphare TS0 Sample .. [10:17:19.992 5810 WehSpheare (DealiveryDECantroller

101 I

101 I

101 i

wischloe WWiehSphare [TS0 Sample .. 120,346 110 WehSphere DelivenyDECantraller
wisch20e WebSphare TS0 Sample .. T.a7.088 5687 WebSphera DeliveryDEController
wischloe WiehSphere [TS0 Sample ... 1.37.689 524 WehSphere DeliveryDEContraller

Figure 4-9 Transaction Tracer captures a list of all individual fransactions that exceed a user-defined
response time threshold

Chapter 4. Introscope 121

Figure 4-10 illustrates the component breakdown of one of the transactions,
which is displayed in the middle portion of the window. The time in the transaction
is represented horizontally across the window. From top to bottom are the
application components that are used within the transaction. This unique
visualization allows users to quickly see an entire transaction, its component
parts, and the dependencies.

Agent:"SuperDomain’wtsco2oaiNebSphere| TS0 Sample 1-1

Timestamp: 112202 101719 5T Zoom w—
Duration: 3144 ms

5UID 75|0 1DIUU 12;50 1590 1?I50 2UIUD 22‘50 25|UU 2?;50 BUIUU 32I50 35|00 3?;50 4UPU 42|50 &

NiebSphere|et Container|Individual Requests|DelivergDEContraller
Senlets| DEContraller
SeniletslzpSendet

Senvlets|_DEAGResults_jsp_1

J5P|_DEAGResults_jsn_t
I I neen EJB[SesioniDeliverySessionBean|dz venySesion TN ur.‘.“ﬁw.‘.‘\WWWJMMWM

Figure 4-10 Response time is represented horizontally while components used by the transaction are
shown vertically

The user can select any one of the components and see its details, as illustrated

in Figure 4-11.
Component Details
ldentification Performance
Type: JOBC Duration: 0 ms
Hame: Query Timestamp (relativel 2918 ms

Path: JOBC|SGLIPrepared@uery | 0% of total transaction time
Properties

Prepared SQL:SELECT ©_C_|D, O_ENTRY_D, O_CARRIER_ID, ©_OL_CWT, O_ALL_LOCAL FROM CBIVP ORDERS WHERE

Figure 4-11 Details of the component are shown in the bottom portion of the Transaction Tracer window

Leak Hunter

Leak Hunter can isolate application memory leaks. While the associated
overhead is small enough to use in production, most users will choose to enable
Leak Hunter only when a leak is suspected. Once a memory leak is detected,
Leak Hunter provides information for developers to quickly identify the leaking
component.

122 Monitoring WebSphere Application Performance on z/OS

4.1.5 Introscope performance and monitoring methodology

In general, Introscope approaches performance problems from the standpoint of
isolating bottlenecks in the course of executing a transaction. These bottlenecks
fall into two broad categories: the time spent waiting on a resource and the time
spent using the resource. Introscope monitors individual transaction requests
entering WebSphere and tracks the use of both logical and physical resources
within each application component. By examining both the time spent waiting on
a resource and the time spent using the resource, Introscope helps identify the
source of application bottlenecks.

Through the customization process, Introscope is set up to monitor
application-specific resources such as data caches, non-J2EE components, and
specialized back-end systems. Although the particular metrics for each of these
resources will be different, the idea is to provide a measure of each resource’s
utilization, queue time, and execution time.

In production, Introscope is typically configured with response time alerts for
incoming WebSphere requests. In complex applications, some of these requests
may naturally have longer response times than others. In these cases, we
configure Introscope to group requests into various response time categories
where each category has its own set of response time thresholds. This helps
prevent Introscope from alerting on conditions that are normal.

In addition to response time alerts for all WebSphere requests, it is important to
alert on the response times for each of the subsystems supporting the
application (such as DB2, CICS, IMS, etc.).

In practice, however, it is sometimes difficult to identify all of the back-end
systems. In these cases, we identify as many subsystems as possible, group the
requests into response time categories, and set appropriate alerting thresholds.
Should the unidentified subsystems cause the application to respond slowly,
monitoring each of the incoming WebSphere requests will indicate a problem.
Using Introscope’s ability to drill down within the application (with the Explorer)
and visualize individual transactions (with Transaction Tracer), the offending
subsystem can be identified quickly.

4.1.6 ITSO configuration

Introscope Java Agents were deployed during the test runs at the ITSO. As
Figure 4-1 on page 112 shows, running within the address space of each
WebSphere server region is an Introscope Java Agent monitoring the
WebSphere application. Various Introscope Workstations were configured on a
variety of different machines for easy monitoring.

Chapter 4. Introscope 123

Daemon

Daemon

INESRVA Sys Mgt INESRVB Sys Mgt

Java Agent Java Agent

SC48 SC50

Daemon

INESRVC Sys Mgt

Java Agent

SC52

\. J

Figure 4-12 Introscope Java Agent configuration at the ITSO

Using the directive files supplied by Wily Technology, the Java Agents reported
the following metrics:

'S

The response time for each URI entering the WebSphere server region from
the moment it is dispatch by the request dispatcher to the time that the
application code is finished handling the request

The response times and throughput of each application servlet, JSP, and EJB

Any in-flight WebSphere transactions that have been in the server region for
more than 30 seconds

Any application component that received a request but has not responded
within 30 seconds

The response times and throughput of individual SQL statements

The elapsed time required to process result sets from each SQL SELECT
statement

The elapsed time to establish a connection to DB2
The response times and throughput of CICS transactions

124 Monitoring WebSphere Application Performance on z/OS

» The response time to get and put messages on MQ Series queues
» The number of in-use JDBC connections
» The application’s use of memory including memory leak detection

In addition to the metrics from the Wily Technology directives, the Java Agent
was configured to report:

» The rate of exceptions (errors) processed by the ITSO sample application

All of these metrics are collected by the Java Agent monitoring the WebSphere
server regions and the application code. The Java Agent does not rely on data
from SMF 120 and does not require the user to turn on this record type.

In addition to raw metrics, Introscope was configured with a number of alerts as
they would be in a typical production deployment:

» Any DB2 response that exceeds 500 milliseconds.

» WebSphere HTTP requests are categorized into quick, mid-range, and slow
categories based on the normal response times of the request. If the
response time for a particular HTTP request is longer than the threshold
defined for its category, an alert is triggered. The response time thresholds of
each category are:

— Quick responders must have a response time of under 800 ms.
— Mid-range responders must have a response time of under 1600 ms.
— Slow responders must have a response time of under 7000 ms.

» Any in-flight WebSphere request not responding to a request within 30
seconds.

» Any application component not responding to a request within 30 seconds.

The first two alerts are response time alerts that report the elapsed time to
complete a transaction. The last two alerts are stalled request alerts and are
triggered immediately when a request takes longer than 30 seconds to complete.
If one of these long-running transactions completes after thirty seconds, the alert
is cleared.

The difference between response time alerts and stalled request alerts is best
illustrated with an example. Suppose an HTTP request enters the WebSphere
server region and takes 45 seconds before it returns a response. Thirty seconds
after the request enters the server region, the Java Agent increases the
WebSphere HTTP stalled request counter from 0 to 1, and the Workstation
receives a stalled request alert. Fifteen seconds later, when the server region
finishes processing the request, the Java Agent decreases the WebSphere

Chapter 4. Introscope 125

HTTP stalled request counter from 1 to 0, it records a 45-second response time
and the stalled request on the Workstation is cleared.

The stalled request alerting logic can be applied to any component in the

application. Placing stalled request counters on many different application
components allows Introscope users to quickly identify what component is
causing a transaction to hang.

The exact values for all of these alert thresholds are set through testing,
experience, or service level agreements, and can be configured dynamically
within Introscope. In fact, the responder categories themselves are an arbitrary
grouping of HTTP requests and not predefined by Introscope.

In a typical production deployment, Introscope alerts would be integrated into a
larger enterprise-wide management framework such as Tivoli, CA UniCenter, or
HP OpenView.

4.2 Examples

The following scenarios illustrate methodology described in 4.1.5, “Introscope
performance and monitoring methodology” on page 123 as applied to specific
performance scenarios in production. The intent of each example is to describe
how Introscope would help isolate performance problems in a typical production
environment.

4.2.1 Example 4: CICS

126

Introscope has sent an alert indicating that a particular HTTP request in the
“quick responders” group is responding slower than the threshold. A quick look at
the “quick response” category indicates, in Figure 4-13 on page 127, that there
are a few requests responding well above the alerting threshold.

Monitoring WebSphere Application Performance on z/OS

Quick Responders

21K

11K

5411

09:52:00 09:54:00 09:66:00 09:58:00

Figure 4-13 Response times of the “quick responders” group. A few HTTP requests
across the sysplex are above the threshold.

No easily testable hypotheses come immediately to mind and we need to gather
additional data. We dynamically switch the Introscope Java Agents into
transaction trace mode and examine the results illustrated in Figure 4-14.

| Host | Process | Agent | Timestamp | Duwafion(ms) | Category | Name
wizcdBoe iiehSphere [TS0 Sample 2-2 09:58:58.7249 2048 WiehSphere fimsiMSCantraller
wiscdloe WehSphere TS0 Sample 2-2/09:58:58.738 2051 MiehSphere fimsiIMSCantroller
wizcdBoe WWiehSphere TS0 Sample 2-2/09:58:58.743 2056 iehSphere fimsiIMSCantraller
wiscdloe WehSphere TS0 Sample 2-2/09:58:47 139 2065 MiehSphere fimsiIMSCantroller
wizcdBoe WWiehSphere TS0 Sample 2-1/09:58:57 A3 2066 hiehSphere fimsiIMSCantraller
wiscdloe WehSphere TS0 Sample 2-2/09:58:49 267 2073MiehSphere fimsiIMSCantroller
wizcdBoe WWiehSphere TS0 Sample 2-2/09:58:47 592 20745 MiehSphere fimsiIMSCantraller
witerd8ne WiishShhata TSN Samnle 2-3N4-A3-A0 396 MATWehSnhara fimel IMSCantraller

Figure 4-14 All of the slow HTTP requests have the same URI, /jms/JMSController

Selecting one of the HTTP requests, we can see its complete response time
breakdown by component in Figure 4-15 on page 128. We see that the overall
request took just over 2000 ms and uses several components, including the CTG
Client and CTG Servers. These appear to constitute the majority of the response

time.

Chapter 4. Introscope

127

3 1q0 2DIU SUIU 4UIU SUIU BUIU TUID SqU QUID 1UPU 11IUU 12|UU 13|UU 14PU 15IUD 1BIUU 1?PD 18IUU 19P

iebSpherefiieb Containerindividual RequestsjmsIMSController

—_— 5

ahphersMieb CantainerindividuzRequestsmetMacamaler
Duration: 2048 ms enlet
Mimestamp: 0 ms sultz_jsp_0
100% of total transaction time

CTGCLIENT| avaG ateway

| CTGELIENT|Local)avat ateway

[TaaERYERIZe merEL Requed]
CTGSERVER|SemerECIRequest

Figure 4-15 The complete response time breakdown of an individual HTTP request by component

In Figure 4-16, by selecting the CTG Server component, we discover that this
component contributes 1.5 seconds (over three quarters) of the overall response
time. This component is performing the ServerECIRequest function, which
executes the CICS transaction.

WebSphera|ifeb Containarindividual Requests|jmsMSContrller
Sendets| IMS Controller
Senlets|spSenet
Senlets|_IMSResults_jzp_0

EJB|Session|ERWANCT GPCBean|priceChangeEJBdriver
CTGCLIENT|)ava s ateway
| CTGCLIENT|Locald avad ateway

| CTGSERVER|SemerECIRequest]

CTGSERYER|ServerECIRequest
Diuration: 1548 ms

Timestamp: 5 ms

76% oftotal transaction time

Component Details
Identification Performance
Type: CTGESERVER Duration: 1548 ms
Hame: ServerECIReguest Timestamp (relstivel 5 me

Figure 4-16 The CTG Server executing the CICS transaction constitutes over 75% of the response time

Examining the other transactions listed in Introscope’s Transaction Tracer list
(again, see Figure 4-14 on page 127), we see almost identical results. Therefore,
it is safe to assume that WebSphere’s response time problems are due to a
slow-responding CICS transaction.

128 Monitoring WebSphere Application Performance on z/OS

Conclusion

This example illustrates the importance of monitoring back-end connections from
the application’s point of view. In practice, a CICS region may be shared across
many different applications. Knowing transaction response times from CICS point
of view may not help isolate the problem due to the sheer volume of data
involved. However, monitoring CICS response times from the application’s point
of view clearly shows the source of the problem.

This example also shows that even though no alerts were set on CICS response
times when Introscope was initially configured, we were able to detect a
performance problem by monitoring each of the incoming HTTP requests. Then,
by isolating the poorly performing transactions using Transaction Tracer, we were
able to quickly identify the offending component. Now, armed with the knowledge
that CICS can be a major contributor to application response time, we
dynamically configure a response time alert on CICS.

4.2.2 Example 6: No DB2 Index

Stalled Requests Datahase Response
Quick Responders CICS Reponse

© O

Figure 4-17 Stalled Request Alert has turned red

In Figure 4-17, we see that Introscope has alerted us that at least one in-flight
WebSphere request has not responded within 30 seconds. Introscope defines a
stall as a Java method that has begun executing code, but has not returned a
response within some predefined time-out. In this case, the time-out was
configured to be 30 seconds.

Looking at these stalled requests in more detail, Figure 4-18 on page 130 shows
that the ejbFindByPrimaryKey method of the CustomerEntityBean has begun
processing a request but has not responded within 30 seconds (hence, its
“Stalled Method Count” is one). It is curious that an ejbFindByPrimaryKey
method should take longer than 30 seconds because, as the name implies, itis a
database lookup on an indexed DB2 table.

Chapter 4. Introscope 129

3345 12:34:30 12:35:15

hdethod Count = 1

=0 |SuperDamain|
talled wWwiscd8oe]

i WiehSphere|
TS Sample 1-1]
EJB|
E nitity]
o CustomerEntityBean|

ejhFindByPrirmanykey:
Stalled Method Count

Figure 4-18 The ejbFindByPrimaryKey method in the CustomerEntityBean has stalled on
one request

A couple of hypotheses come to mind:

» Itis possible that DB2 is experiencing problems.

» The application’s connection to DB2 is somehow broken.

In either of these cases, we would expect that all DB2 accesses would somehow
display signs of problems. If this were the case, we would expect most response
times to be higher than normal. However, Figure 4-19 on page 131 indicates that

WebSphere has been responding to HTTP requests in under 40 ms for several
minutes.

130 Monitoring WebSphere Application Performance on z/OS

Figure 4-19 WebSphere response times per HTTP request

Taking a closer look at DB2:

»

Figure 4-20 shows that the top four of the worst ten response times over the

past several minutes have response times of under 2 ms.

Figure 4-21 on page 132 shows that the application is able to obtain a
connection to DB2 very quickly.

It appears that our initial hypotheses are incorrect and we must obtain additional
information to form new ones.

Top 10 SAL Response Times (ms)

Displayving Top 10

SuperDomainl... |SELECT I_MAVE, |_PRICE....:Average Query RoundTrip Time (ms)= 2

SuperDomain]... |SELECT |I_MAWE, |_PRICE,...:Average Query RoundTrp Time (ms) = 1

SuperDomain]...|SELECT |_ID FROM CHIWP. .. Awerage Query Round Trp Time (ms)= 1

Figure 4-20 Top four of the worst ten SQL response times; all are 2 ms or less

Chapter 4. Introscope

131

Avg Time Waiting for Conn.

it n

a7

1.5

I:.IIIIII“IIIIIIIIIIIIl*lIIIIIIII

Figure 4-21 Average time the application must wait for a DB2 connection (in ms)

While trying to determine what additional information to gather, we see the alert
status change. Figure 4-22 shows the Stalled Request alert has cleared, but now
Introscope indicates that database response time is slow. Checking the database
response times again in Figure 4-23 on page 133, we see that a particular query,
SELECT ... FROM CBNP.CUSTOMER WHERE C_ID = ? AND C_D_ID = ? AND C_W_ID =
?, has taken approximately two and a half minutes to complete.

Stalled Requests Database Response

O @

Figure 4-22 The Stalled Request alert has cleared and the Database Response alert
turns red

132 Monitoring WebSphere Application Performance on z/OS

Top 10 SQL Response Times (ms)

Displaying Top 10

SuperDomain|...|SELECT C_FIRST, C...:Average Query RoundTrp Time (ms) = 142.6k

SuperDomain|
o WiscdBog|
YWehSphere|
(TS0 Sample 1-1|
% JDBC|
SGL
Prepared|
Guen|
SELECT C_FIRST, C_MIDDLE, C_LAST, C_STREET 1, C_STREET_2,
C_CITY, C_STATE, C_ZIP, C_PHOME, C_SINCE, C_CREDIT,
C_CREDIT_LIM, C_DISCOUNT, C_BALAMCE, C_YTD_PAYMENT,
C_PAYMENT _CMT, C_DELIWERY_CNT, C_DATAFROM CBIVP.CUSTOMER
— WHERE C_ID=TAND C_D_ID=7AND CW_ D=
Awerage Query RoundTrip Time {ms)

o

=

Figure 4-23 This query has taken 142.6 thousand milliseconds to complete

The fact that the response time for this SELECT statement exceeded 30 seconds
explains why Introscope first detected the problem as a stalled request.
Introscope is configured to alert on any request that has been in the system for
longer than 30 seconds, regardless of what its ultimate response time will turn
out to be. When the database finally responded to the request two minutes later,
Introscope alerted on a slow database response.

Conclusion

It is important to note that, in this example, measuring average database
response time would have been inadequate to identify the source of the problem.
In fact, it is quite possible that averaging the bad database response times with
many good responses would have completely masked the problem. In practice,
monitoring back-end responses as granularly as possible (for example by SQL
statement, CICS transaction ID, MQ Series queue name) is invaluable in both
detecting and diagnosing performance problems.

Chapter 4. Introscope 133

4.2.3 Example 10: Too Much Logging

Figure 4-24 shows all categories of HTTP requests (quick, mid-range, and slow)
are above their respective alerting thresholds. Because the Java Agent captures
performance metrics from the time the transaction is handled by the WebSphere
request dispatcher until the server region is finished handling the request, we can
be confident that the poor response time is caused by an application component
or a resource utilized by the server region as opposed to the network or Web

server.

Quick Responders

3.2k

Slow Responders

Ak 195K

16:43:00 16:45:00 16:47:00 16:49:00

Figure 4-24 Each request response time group is above the alerting threshold

Several hypotheses come immediately to mind:

'S

'S

'S

'S

'S

Higher load on the system.

An application memory leak.

The CPU available to the WebSphere LPAR has changed.

A back-end resource common to most HTTP requests is slow.

A hardware error is causing a high number of interrupts.

134 Monitoring WebSphere Application Performance on z/OS

With so many hypotheses to test, we try to gather more information in the hopes
of somehow prioritizing our investigation. One of the items that stands out from a
quick system overview is Figure 4-25. The server regions’ I/O rates are far higher
than normal. This server region is generating 84,000 bytes per second of output.
Other server regions have a similarly high rate of output.

SuperDomain|wtscS0oe et Sphene| TS0 Sample 1-1]%ystem Logs:Standard Output Bytes per Second = 84K

SuperDomain|
wtscalog|
itighSphere|
TS0 Sample 1-1)
Systermn Logs:
Standard Output Bytes per Second

SuperDomain|wtschZoa|Mieb Sphere|ITS0 Sample 1-2|System Logs:

Figure 4-25 Nearly 85 kps of output from multiple server regions

Grouping the rate of output with the application code generating the output, we
can see why. Figure 4-26 on page 136 indicates that the debugOut method is the

culprit.

Chapter 4. Introscope 135

Displaying Top 5

SuperDamain|
yitscalog|
iehSpharg|
TS0 Sample 1-1]
EJB|
Session|
MewCrder3essionBean|
debugou
Called System Logs:
Standard Qutput Bytes per Second

SuperDomainftsciDoe|iieb Sphere|IT30 Sample 1-1]...] 5:5tandard Output Bytes per Sec

SuperomainutscAloe ek Sphee| T30 Sample 1-1]E) JStandard Output Bytes per Secc

Figure 4-26 The debugOut method tops the list of methods causing system output

The very name, debugOut, indicates that it is likely that a logging configuration
parameter is set incorrectly. Upon investigation, the logging level for the
application is set to debug instead of production.

Conclusion

This example illustrates the importance of judging the evidence from the
monitoring tools against one’s expectations of the system’s behavior. Without an
expectation that the system should not be performing a lot of I/O, one could
easily miss the incorrect log level setting and begin an exercise of investigating
several false hypotheses.

4.2.4 Example 3: Memory Leak

Figure 4-27 on page 137 indicates that a WebSphere server region’s memory
requirements have been growing. All other server regions’ memory graphs
indicate the same thing. Of course, this does not immediately imply a memory
leak in the application, but it does fit the pattern described in Appendix B,
“Configuration files” on page 291: the minimum points are ever increasing.

Figure 4-28 on page 137 shows that the overall average response time across
the entire sysplex has been steadily growing for several minutes.

136 Monitoring WebSphere Application Performance on z/OS

65 2hi;

55 8hi

51.7hi

4.7l

Figure 4-27 Average heap size of this WebSphere server region is growing

1.1k

063 9

780 5

Figure 4-28 Average response time across all WebSphere requests in the sysplex

There are two immediate hypotheses:
» The load on the system is increasing, causing more memory to be consumed.

» The application has a memory leak. Under this hypothesis, the increased
response times would be due to the Garbage Collector taking more CPU
cycles.

Investigating the first hypothesis, we initially expect that additional load would
imply more HTTP sessions in use to handle the load. However, Figure 4-29 on
page 138 shows no obvious increase in the number of HTTP sessions.

Chapter 4. Introscope 137

LY e
T8 54
1
fi55+

G gt

Figure 4-29 HTTP live session count over time

Further, a graph of system load in Figure 4-30 does not indicate any growth in
load over the same time period as the server regions’ increase in memory. In
fact, it appears that the load on the system has been decreasing. It is possible
that the application has a memory leak.

Load Across Sysplex
Displaying Top 10

280+

234

1881

1424

i
Figure 4-30 Application load has been decreasing over time

After enabling Leak Hunter and restarting the server region JVM, Introscope now
tracks WebSphere’s server regions’ memory allocations. After several minutes of
load, Figure 4-31 on page 139 shows that Leak Hunter has detected a potential
memory leak.

138 Monitoring WebSphere Application Performance on z/OS

10:27:20 10:28:30

SuperDomain|
wiscd8oe|
WehSphere|
ITSO Sample 1-1]
LeakHunter:
Fotential Leak Caunt

Figure 4-31 Leak Hunter detects the source of the memory leak

Figure 4-32 shows a Java stack trace indicating which application is causing the
leak, and where in that application the leaking component is. With this
knowledge, the problematic application can be isolated in its own server region
and managed independently as described in “Managing memory leaks in
production” on page 285. This information can also be given to the application’s
developers to help resolve the problem.

SuperDomain|wtsc48oe|...|=clinit>-1991# 1:Allocation Stack Trace =
at weberwwno.NOController.<clinit>(NOController.java)
at java.lang.Class.newlnstancel{Mative Method)
at java.lang.Class.newlnstance(Class.java:26.2)
at java.beans.Beans.instantiate(Beans. java:233)
at java.beans.Beans.instantiate(Beans._java: 7 7)
at com.ibm.senviet.engine.webhapp.WebAppSerndetManager.loadSe
at com.ibm.senviet.engine.webapp.WebApp.loadSerdetUnderBemo
at com.ibm.ws390.wc.webhapp.RemoteWebApplimpl.drivel oadSend
at com.ibm.ws390.wc.container.RemoteWehappBean.drivel oadSe
at com.ibm.ws390.wc.container.EJSRemoteStatelessRemotelWehs
at com.ibm.ws390.wc.container.RemoteWWebhContainerBean.driveli
at com.ibm.ws390.wc.container.EJSRemoteStatelessRemoteleh(

Figure 4-32 Leak Hunter information can be given to developers to fix the problem

Conclusion

Memory leaks are traditionally very difficult to detect and track down in any
language. Java makes this even more so because of the non-deterministic nature
of the Garbage Collector. In some cases, memory leaks only occur under
particular circumstances that are difficult to reproduce in a test environment.
Therefore, being able to track memory leaks in production can be vital to fixing
the problem. With the proper tools, a memory leak can be quickly isolated and

Chapter 4. Introscope 139

the offending application can be managed while developers work on solving the
problem.

4.2.5 Example 1: Identify Bad User

Periodically, the response time alert for the quick category of a URI’s alert
switches to a danger condition and then returns to the normal state. While
random response time spikes can be expected in many production environments,
examination of Figure 4-33 shows that the slow HTTP requests all originate from
the same URI: /OrderStatus/0SController.

Quick Responders

3k

2.2K

1.5K;

e mitscdBog|

i YEbSpherel
ST TS0 Sample 1-2|
1420000 142200 142400 14 \WebSpherg|
Weh Container|
Individual Requests|
[0rderStatusfOSCantrallgr
Called Senvets|
oaContraller;
Pverage Response Time (ms)

Figure 4-33 All slow response times are from the same URI

With no other information to go on and no strong intuition that could lead to a
hypothesis, we guess that the database may be slow for a particular query. Over
the same time period, Figure 4-34 on page 141 indicates that there is a query
that is taking nearly twice as long as the next longest query. This figure reports
SQL queries’ average round trip time. Introscope defines query round trip time as
the elapsed time required to execute the query and process the result set.

140 Monitoring WebSphere Application Performance on z/OS

LIspiayniy 1up v

wtscdfoe|. JSELECT C_IO, C_D_ID,Average Queny RoundTrp Time (ms)= 275

wtscdEoe|., |SELECT O_D_[D, 0_I0,Average Query RoundTrp Time (ms)= 154

wtzch2oe|. JSELECT 0_D0_ID, 0_10, O...:Awerage Query RoundTrp Time (ms) = 58

wtschOoe|.. |SELECT 0_D_ID, 0_I0, 0...:Awerage Query RoundTrip Time (ms) = 58

wtseS00e|,. [SELECT O_D_ID, 010, 0...:A4erage Query RoundTrp Time (ms) = 54

-
|

1 | | | l |
1] 40 20 120 160 200 240 280

Figure 4-34 One query appears to be longer than the rest over a similar time frame

Now we have some suspicion that the problem is database-related, but we need
to investigate further.

Figure 4-35 on page 142 illustrates using the Introscope Explorer to drill down

and find what code is executing this query, in this case the
ejbFindCustomerByLastName method of the CustomerEntityBean.

Chapter 4. Introscope 141

® [y EJB
& [Entity
® [CustomerEntityBean

®= 3l ejbActivate
& 3l eibFindByPrirnarykey
o @ ejbFindCustomerByLasthlame
[#]€ sverage Response Time (ms)
[#]€ Interval Invocations
@ 3 Called EJB
& (4 Called JDBC
§ g 5aL
@ 3 Prepared
§ 3 Quary
@ (3] SELECT C_ID, C_D_ID, C_W_ID
[#€ pwarage Query RoundTrip T
[#]€ swerage Query Time (ms)
[#]E Queries Per Second

Figure 4-35 T Introscope Explorer shows that the ejbFindCustomerBylLastName calls the
badly performing query

Figure 4-36 shows the response time graph of this query’s average round trip
time over several successive 15-second intervals.

o=

20

184

a7

Figure 4-36 The average query round trip time for the SQL statement in question

Viewing the query’s execute time in Figure 4-37 on page 143, we find that DB2
executes the query in less than one millisecond. Clearly the problem is not
related to the DB2 query optimizer.

142 Monitoring WebSphere Application Performance on z/OS

1 P e Sy S Y SV SR VSV S VR PR

Figure 4-37 The same query’s execute time is below 1 ms

Since this query’s round trip time is so much longer than other queries (again,
see Figure 4-34 on page 141), it is quite possible that the application code itself
is to blame for the poor response.

In hopes of obtaining more information, we initiate a Transaction Tracer session
to catch the individual WebSphere transactions performing poorly. Now we
clearly see the source of the problem in Figure 4-38 on page 144. Examining
each of the slow requests, we see that they have the same user ID, MIN. Going
to the DBA with the query and the user ID, we discover that this particular user ID
has several thousand rows in the table. Furthermore, the particular query that the
application uses to retrieve the user information is poorly written, returning each
of these rows when it should be specifying a more complete WHERE clause.

Chapter 4. Introscope 143

[enviets)_O5Results jsp 1|

JSP|_OSResults_jzp_1
EJB|Seszion|OrderStatusSessionBean|orderStatusSession

EJB|Session|OrderStatusSessionBean|getCustomerByLasthame

EJB|Entity|CustomerEntityBean|ajbFindCustomerByLastame

Component Details

ldentification Performance
Type: Servicts Duration: G467 ms
Hame:_O=Fezuts_jsp 1 Timestamp (relstive): 2 me

Path: Servlets|_OSResults_jsp_1 || 100% of total transaction time
Properties

URL: /CrderStatusiosResutts j=p
URL Quenycommand=tanual&CWMPBEMP=falzeddistrictid=26&customerLastMame=MIN&customerld=1 2&war ehouseld=268
User 1D:hN

Figure 4-38 Selecting any servlet or JSP will show the user ID associated with the
request

Conclusion

In some cases, the parameters of an individual transaction can cause poor
response time. In this example, it was the user ID. The ability to trace an
individual transaction with its parameters through the entire WebSphere server

region and view the components contributing to its response time is critical for
tracking down certain performance problems.

4.2.6 Example 7: Transaction Hang

Stalled Requests

Figure 4-39 Stalled Request Alert has turned red

144 Monitoring WebSphere Application Performance on z/OS

In Figure 4-39 on page 144 we see that Introscope has alerted us that at least
one in-flight WebSphere request has not responded within 30 seconds. Looking
more closely at the stalled requests, Figure 4-40 shows that six requests within
one server region are hanging on the MQSeries queue get operation. In fact,
looking at other server regions, we see that most have one or two requests hung
on this same operation.

st: Stalled hiethod Count = 6

rid

ntscdBoe|
M aehSphere|
i TS0 Sample 2-1|
M2Series|
mMCueus|
get:
a1l Stalled Method Count

airy

e

Figure 4-40 Six requests in this server region have hung on the MQSeries get operation

It turns out that the application relies on another application that, until now, was
unknown to the production support team. This other application is supposed to
place messages onto the MQ Queue for our WebSphere application to process.
In this case, it stopped placing messages on the queue. Our application did not
have a time-out facility, so it hangs indefinitely. In this configuration, each
WebSphere server region only has six threads to handle incoming requests.
Under these circumstances, one server region is entirely useless and must be
restarted.

Conclusion

A broken MQ Series queue process is only one of several conditions that could
cause a WebSphere transaction to hang. Poorly designed application e-mail
components, external servers, and third-party systems are all potential sources
of hung transactions. Making the problem worse, the J2EE specification can
make it difficult for the application itself to provide appropriate facilities to time-out
external requests. Therefore, it is critical that application monitoring include the
ability to detect hung requests.

4.2.7 Example 8: Static Pages

We want to detect when WebSphere is serving static pages, so we configure
Introscope to group all URIs dispatched by WebSphere that end with HTML,
JPG, or GIF. This group, and any other arbitrary groups of performance metrics,

Chapter 4. Introscope 145

is configured interactively through the Introscope Workstation. The resulting
group of metrics is shown in Figure 4-41.
7044
528

352

17.04F gl A

T P
140230 14:03:30 14:04:30 14:05:30 14:06:30 14:07 30 1402230 14:09:30

Figure 4-41 All dispatched URIs ending in HTML, JPG, or GIF

To find the component serving this static content, we switch to the Introscope
Explorer and drill down on one of these dispatched URIs. Figure 4-42 on

page 147 shows that the
/WebSphereSamples/TradeSample/TradeDocs/contentHome.html URI is
ultimately served by SimpleFileServlet. Exploring the other static content URIs
yields the same result.

146 Monitoring WebSphere Application Performance on z/OS

@) WebSphers
& 3] HTTP Session Objects
- [Weh Container
[#]4 Average Response Time (ms)
€ Interval Invocations
[#]€ Stalled Method Count
@ = Individual Reguests
0—@JWebSphere8ampIesﬂ'ra|:Ie8ampleIsewIeﬂTradeAppSewlet
o @JWebSphereSampIesﬂ'ra|:Ie8amp|eﬂ'radeDucsIcnntentHome.html
g lﬂwerage Response Tirme (ms)|
[#4 Interval Invocations
& (o Called Serets
@ 3 SimpleFileSeret
[#]4 Awerage Response Time (ms)
[#]4 Responses Per Second

Figure 4-42 Using the Introscope Explorer’s drill-down interface, we find that
SimpleFileServiet is serving all static content

We want to know how much time WebSphere is spending serving this static
content. We instruct Introscope to compute the average response time across all
static content URIs. Then we instruct Introscope to compute the total number of
static content URIs dispatched by WebSphere per second. The results of both of
these computations are displayed in Figure 4-43 and Figure 4-44 on page 148,
respectively.

1] 301 3311
Figure 4-43 Total number of static content URIs dispatched by WebSphere per second

Chapter 4. Introscope 147

0 15 187

Figure 4-44 Average time WebSphere spends serving each static content URI

Multiplying the two yields the total number of milliseconds WebSphere spends
serving static content during any particular time interval. In this case,
approximately 4.5 seconds are used every 15 seconds to serve static content.

Conclusion

Many WebSphere installations choose to serve static content from a caching
server such as IBM WebSphere Edge Server. Although this is not so much a
throughput decision as it is an economic one, it is useful to be able to detect
when WebSphere on z/OS is inappropriately serving static content because of a
caching server failure or misconfiguration.

4.2.8 Example 10: Increased WebSphere Activity

Stalled Requests Database Response
Quick Responders CICS Reponse

O

Mid-Rage Responders

®

Slow Responders

©

Figure 4-45 System is slowing down, but subsystem responses are good

Monitoring WebSphere Application Performance on z/OS

In Figure 4-45 on page 148, we see that two of the three responder categories
are responding poorly, but the corresponding subsystems are performing
normally. Taking a closer look at the slow and mid-range responder categories in
Figure 4-46, we see that many, if not all, of the HTTP requests are above their
respective alerting thresholds. Figure 4-47 on page 150 explains why we see a
green light in the slow responder alert: WebSphere hasn’t received any requests
in this category for a number of minutes.

Guick Responders

167 K

125K

8.4k

6200

Figure 4-46 Many responses are well above alerting thresholds

Chapter 4. Introscope 149

Slow Responders

11:46:00 11:48:00 11:50:00 11:52:00

Figure 4-47 There are no requests in the slow responder category

Puzzled why response times would be slow, we take a closer look at the
database in Figure 4-48 on page 151. We can see that, in a few cases, the
database has responded between 1000 ms and 1400 ms, but this is rare. Most of
its responses are well under the alerting thresholds. The other potential problem
with database access is the time required to obtain a connection to the database.
We can see that these response times are well under 100 ms.

150 Monitoring WebSphere Application Performance on z/OS

Database Response Time o
Database Monitoring

ITSO Sample App DB/2

[) ', o 3 #
14700 114800 11:49:00 11:80:00 11:5100 11:52:00 11:52:00 1145400

Avy Time Waiting for Conn. Top 10 SQL Response Times (ms)

w5 Displaying Top 10

wtschzoe| |SELECT 0_D_IO, O_IO, 0_w_ID FR...:Average Queny Time (ms) = &

wizedZoa|. |SELECT 0_D_ID, O_ID, 0_W_|D FR....Average Query Time (ms) = &

A b

wizedoa|, [INSERT INTO CBIVP.HISTORY (H_....Awerage Update Time (ms) = 44

109
wizcddos|. [INSERT INTO CBIVP.HISTORY (H_....Awerage Update Time (ms)= 45

MA4700 114800 11:51:00 11:53:00 wtzoddos|. |SELECT W_NAME, Wi STREET_1, W'....Average Quary Time (ms) = 44

1 1 1 1 1 1 1
o 2 16 4 3z 40 £ o6

Figure 4-48 Most database-related accesses look good

Looking at the details does not shed any light on this problem. We decide to take
a more global view of the entire sysplex. Figure 4-49 on page 152 illustrates the
source of the problem: Aggregate load across all WebSphere server regions in
the sysplex has been steadily increasing. The effect on response time is
illustrated in Figure 4-49 on page 152. This graph represents the number of
request services over all WebSphere server regions during a 15-second interval.

Chapter 4. Introscope 151

Load Across Sysplex

Thl-

570+

380+

190+

11:35:30

113630 113730 113830 113930 11:40:30 11:41:30 114230

|E 0 Custom hdetric Host (drtual) Custom bde.. .. [Individual Requests: Individual Requests = 692

Figure 4-49 Load across the sysplex has been steadily increasing. The y-axis represents
the number of individual requests WebSphere has received during a 15-second interval.

Response Time Across Sysplex

1 k5

T 11zTaon 11:32:00 11:41:00 11:43:00

I @ & .. PorerAage Response Time = 727

Figure 4-50 Average response times for all HTTP requests across the sysplex are
increasing during the same time period as load has been increasing

We can see that average response time across the sysplex started to increase
non-linearly at approximately 11:41. At the same time, we see from the graph of

152 Monitoring WebSphere Application Performance on z/OS

sysplex load, the system handled 570 requests during a 15-second interval or 38
transactions per second. This is the so-called “knee of the curve,” the point at
which the currently available system resources cannot bear more load without
incurring substantially longer response times due to queuing.

Conclusion

Every system has a breaking point, and one way to find it is through experience.
That experience can either come through testing the application or in production.
Assuming we know the breaking point, appropriate throughput alert thresholds
can be set to notify operations management that the application is beginning to
become overloaded.

4.2.9 Example 11: Prioritizing Problems

In Figure 4-51, we see that four Introscope alerts are in the red (danger) state:
CICS is responding slowly, DB2 is responding slowly, at least one request is
stalled within a server region, and some of the requests in the mid-range
category are responding somewhat more slowly than normal.

Stalled Requests Datahase Response
Quick Responders CICS Reponse

Mid-Rage Responders

O

Slow Responders

©

Figure 4-51 Many alerts are in the danger state

The immediate question is which alert to respond to first. In general, the answer
depends on the business priority of the affected applications’ functions and the
degree to which the problem is perceived by end users. In this case, we know
that stalled requests can eventually crash an entire server region, affecting all
applications and all of the applications’ users. Thus, the stalled request would
seem to be the most important alert to attend to first. However, before beginning

Chapter 4. Introscope 153

that investigation, we take a quick look at the end-user response times to ensure
that these problems aren’t so bad as to warrant investigation first.

Figure 4-52 shows the response times across all categories. We see that most
response times are either just above the danger threshold or below it. Clearly
one of the requests in the “quick” responder category is well above its alerting
threshold, with response times approaching 19 seconds.

Cuick Responders

198k

148K

9.0kt

4 QK+

1200 1z2:46:00 12:48:00 12:50:00

Mid-range Responders Slow Responders

1 = h—ch
12:44:00 12:46:00 12:48:00 12:50:00 12:44:00 124600 12:43:00 12:50:00

Figure 4-52 Response times for all response time categories. Most are ok, but one quick
responder appears to be very bad.

Although response times this long are alarming, particularly when the normal
response times for “quick” responders is below 800 ms, we simply note the
problem for now and proceed to the problem that could crash the server: the
stalled request alert.

An example of investigating a stalled request is described in 4.2.6, “Example 7:
Transaction Hang” on page 144. In this case, we see that only one request is

154 Monitoring WebSphere Application Performance on z/OS

stalled thus far. Because we have five more threads available and the number of
stalled requests does not appear to be increasing, we decide to keep an eye on
the stalled requests and proceed to investigate the other alerts.

Again, the choice as to which problem to track down first ideally involves the
relative business value of the requests affected. Although we know from

Figure 4-52 on page 154 which HTTP requests are slower than normal, we have
no information to weigh their relative business values. Therefore, we must
choose using a different criterion.

In this case, we know that the database is involved in many more requests than
CICS so we decide to investigate it first. Examples of investigating database
problems can be found in sections 4.2.2, “Example 6: No DB2 Index” on

page 129 and 4.2.5, “Example 1: Identify Bad User” on page 140. After we track
down that problem, we can investigate CICS (an example of which can be found
in 4.2.1, “Example 4: CICS” on page 126).

In real life, multiple problems can occur simultaneously, and we have no way of
knowing whether the problems are related to one another. So, we must have
some order for investigating the problems and that generally implies prioritizing
the worst problems first. Ideally, the worst problems would be those that most
greatly affect the users of the application. Unfortunately, that requires assigning a
business value to the requests entering WebSphere and that information is rarely
communicated to operations personnel. Therefore, we are left with our
experience and general knowledge of the application to set the priorities.

Chapter 4. Introscope 155

156 Monitoring WebSphere Application Performance on z/OS

PathWAI solutions for
WebSphere

Candle's PathWAI™ solutions are built on more than 26 years of experience
managing mission-critical applications with the OMEGAMON® performance
monitor. PathWAI solutions consist of packages of software, services, and
training. These packages are tailored to suit each phase of the “build, deploy,
manage” life-cycle of WebSphere e-business initiatives.

© Copyright IBM Corp. 2003 All rights reserved. 157

5.1 PathWAI solutions

PathWAI packages offered for WebSphere Application Server include:

» PathWAI Architecture for WebSphere provides architecture assessment for
the design phase.

» PathWAI Deployment for WebSphere provides performance tuning to ensure
scalability for the deployment phase.

» PathWAI Monitor for WebSphere Application Server provides performance
monitoring tools and customized services to manage development and test
environments.

» PathWAI Dashboard for WebSphere Infrastructure provides an integrated
performance monitoring solution to manage production environments.

5.2 OMEGAMON XE performance monitors

PathWAI Monitor and Dashboard core packages include the OMEGAMON XE for
the WebSphere Application Server performance monitor. Additional performance
monitors for connected applications and platforms can be added to the PathWAI
packages.

The PathWAI Dashboard solution also includes OMEGAMON DE technology,
which enables you to monitor all the components of your WebSphere
infrastructure from a single “dashboard view” of the enterprise. In this dashboard
view you can combine performance metrics from a variety of applications on
disparate platforms.

For example, you can see performance metrics from WebSphere Application
Server, WebSphere MQ, DB2 and the underlying operating system in the
Dashboard view. These reports are browser-accessible and can be personalized
to monitor the metrics that are most critical to your enterprise. For example, you
could display JVM memory usage and response times for your WebSphere
Application Server JSPs and servlets, and monitor the “dead letter queue” for
WebSphere MQ from a single “pane of glass”. OMEGAMON's event-based
monitoring and historical trend analysis can help you address performance
problems before they cause slowdowns or downtime.

5.2.1 OMEGAMON XE architecture

OMEGAMON XE provides a multi-tiered, multi-platform, client-server
architecture for maximum flexibility and scalability.

Figure 5-1 depicts a high-level view of the architecture showing the OMEGAMON
XE clients, servers and agents.

158 Monitoring WebSphere Application Performance on z/OS

OMEGAMON XE
Desktop Client

Web Browser Client

OMEGAMON XE

for WebSphere
Agent |
zSeries [I
[
Candie 4 OMEGAMON XE
Management for DB2 Agent
Server Hub ||
I
CandleNet
Portal Server |

|
|
|
OMEGAMON XE
for WebSphere im
TN Agent |
UNIX | I
|
Remote Candle OMEGAMON XE
Management 4 for WebSphere MQ | | |~
Server Agent | | |

Figure 5-1 OMEGAMON XE architecture

Clients
OMEGAMON XE provides an easy-to-use Java-based client that runs on a
workstation as a desktop application or accessed through a Web browser.

The OMEGAMON XE client displays status information for monitored
components using red, yellow, or green indicators, denoting critical, warning, or
normal status, respectively. The client also provides access to real-time and
historical data for problem analysis, and facilitates user administration, event
definition, and automation.

The OMEGAMON XE screens, known as workspaces, are comprised of multiple
views. By default, each workspace includes a navigator view that shows status
from the Candle monitoring agents organized by the operating system platform in
a tree-like hierarchy. Figure 5-2 shows a sample OMEGAMON XE workspace.

Chapter 5. PathWAI solutions for WebSphere 159

The navigator tree view includes agents on multiple UNIX and Windows servers
organized by platform.

CandleNet Portal ™" Wusiness at the speed of light
File Edit %iew Help

FEBmin S 2 Boulddad @E2TES
@ € [Prysical - ma =x 0o ox

Enterprise - q g | :
g-@a UNIX Systems Logical Disk Space 5 Memory Allocation
i goodguy2 ot
=g hahparel L
= hgsunsybh &
-8 Windows Systerns E
¢ o-EE HoomT b
[Eh windows NT

=i HODNTZ

mi B e *

ES LT

FrimangHODHTZ:NT

| Oawailable ke
: [i] 20 40 &0 a0 100 | =
L ; : Cache KB
1] | |04 used| | Ol commit Limit k8|
B Free | | Ocommitted kB |
€5 Physical | bR
mBE 0o = i E mB O x
Top Process CPU Time Top Process Private Size | Top Process Virtual Size
WK e rvices java java L
| — T
System java | lwe agent
TASKMGR java java
osagent loneagent: | java
HTTFDL: i e s || DataF! i e
0.0 1.0 am. | [i] 80000 160000 240000 320000 | 0 400000 800000 1200000 1600000
T s ' Kb
B % vser Time | |OFiivate k8| Clwirtual kB |

Figure 5-2 Sample OMEGAMON XE workspace

Feature highlights of the OMEGAMON XE interface are:

» Easily customizable to present data in a variety of formats, including bar
charts, graphs, tables and pie charts

» Easily switch from real-time data to historical views

Access Web applications within the OMEGAMON XE interface

» Access mainframe applications using the 3270 and 5250 terminal emulator
views

» Display the status of your enterprise by physical system, by geographic
location on a map, or create a business view to represent application
components in a logical view

» Issue console commands and invoke product-provided actions to dynamically
tune monitored components

v

In addition, with OMEGAMON DE, each view can contain performance and
availability data from a different OMEGAMON XE monitoring agent for an
integrated overview of your WebSphere enterprise. OMEGAMON XE clients run
on Windows NT, Windows 98, Windows 2000 and Windows XP Professional.

160 Monitoring WebSphere Application Performance on z/OS

The OMEGAMON XE clients are connected to the CandleNet Portal Server.

CandleNet Portal Server

The CandleNet Portal Server (CNPS) services requests from the OMEGAMON

XE clients. Its function is to collect, analyze and format the data for presentation
by the OMEGAMON XE client. The CNPS runs on Windows NT, Windows 2000,
or Windows XP Professional.

The CNPS is connected to the Candle Management Server hub.

Candle Management Server

The Candle Management Server® (CMS™) acts as the hub for the monitoring
agents. It collects performance and availability data from the agents and passes
it to the CandleNet Portal® Server. The CMS also evaluates Candle-provided
and user-defined situations, to determine whether a threshold has been
exceeded or a condition has been met. When a situation is true, an alert is
displayed on the OMEGAMON XE navigator tree view. Situations can also be
automated to take corrective actions or provide problem notification by pager,
e-mail, or voice application.

Secondary Candle Management Servers (remote CMS servers) may be added
to provide scalability and load balancing. You can also configure a hot-standby
CMS that acts as a backup in a fault-tolerant environment. CMS runs on z/OS,
0S/390, UNIX, Windows NT, or Windows 2000.

CMS is connected to one or more agents.

Agents

OMEGAMON XE agents monitor applications, databases, subsystems,
operating systems, etc. They must be installed on the same node or LPAR that
hosts the resources to be monitored.

Agents collect data upon request from the hub or remote CMS to which they are
connected.

Agents support requests for data as follows:

» Satisfy real-time requests to display data in OMEGAMON XE workspaces.

» Provide data for situation evaluation on a user-defined interval.

» Collect historical data based on a user-defined interval.

Alert managers are specialized agents that monitor alerts from a third-party
product or send data about events monitored by Candle products to a third-party

Chapter 5. PathWAI solutions for WebSphere 161

management application, such as Tivoli Enterprise™ Console or CA Unicenter
TNG.

OMEGAMON XE monitoring agents are available for many hardware platforms,
operating systems and applications, as shown in Table 5-1.

Table 5-1 Candle agents

Platform Monitored applications

zSeries CICS, Crypto, DB2, IMS, OS/390 UNIX System
Services, Mainframe Networks, OS/390, storage,
sysplex

Middleware WebSphere MQ, WebSphere MQ Integrator

Distributed platforms Linux, OS/400®, UNIX, Windows NT

Distributed applications | DB2 UDB, MS SQL Server, Netware, Oracle, R/3,
Sybase, Tuxedo

Application end-user SAP, Citrix MetaFrame Server
response

Additionally, the Candle Universal Agent is a generic agent that allows you to
integrate and monitor any type of data that is collected at your site into the
PathWAI solution.

5.2.2 Monitoring WebSphere Application Server

OMEGAMON XE for WebSphere Application Server provides the following
performance monitoring capabilities for the entire WebSphere application life
cycle:

» Workload analysis

Application trace

SMF information

JVM profiler data

Configuration and environmental data

vVvyyy

Workload analysis

Workload analysis is a powerful feature that quickly identifies resource
bottlenecks affecting your WebSphere applications. This feature measures the
response time of servlets, JSPs, and EJB methods, and identifies where these
workloads are spending their time.

162 Monitoring WebSphere Application Performance on z/OS

All Workloads is the main workspace provided by workload analysis. For each
workload you can see the average response time, CPU time, number of
invocations, and a breakdown of the response time by component. For example,
the amount of time spent performing JMS requests, JNDI lookups, or SQL
updates. The ten workloads with the worst average response times are
represented in a bar chart, with the response time for each component displayed
in a different color.

Figure 5-3 is an example of the All Workloads workspace for the Trade2 sample
application.

CandleNet Portal™
File Edit View Help

Wusiness at the speed of light

HEBRAND 582

BEOoWHaodtE2E? TR

4

Bl Application Server Instance
- Bkt Application Server Overview
Bl Application Server Instance SMF Intel
B JZEE Server Containers

- Bt JZEE Server Beans

-Bhs J2EE Server Bean Methods

LTH Al Yiorkloads

-y Longest Running Yorkloads

- B Datasources

Bk HTTP Sessions

Bk IMS Summary

--Eha WM Threads

By J¥M Heap Usage

Bly JuM Garbage Collector Activity

Bk JvM Method Summary | b

& Q‘QIPhysical 'I me = msa x
=-f OMTSRYA = Ten Worst Average Response Times

|OEJB Home Delay Time
|EEJB Meathad Dalay Time
|OEJe Remate Delay Time
Eums pelay Time

| Olunp Delay Time

|CUTA Delay Time

| OMiscellaneous Delay Time
M Netrok Socket Delay Time
|EsaL connestion Delay Time
B 500 Query Delay Time

B s0L Update Delay Time

| M semiat Delay Time
|Dusardafined Dalay Time

trade TradeBeanfaogin

... EJSCMPHoldingHomeBeansfore ate.

trade.TradeBean/ereateHolding

trade TradeBeantbuy:

..ebapp. SimpleFileSendetidoGet

..client. TradeAppSendetidaPost A

...PHoldingHomeB eanifindByUserlD J

trade. TradeBeanigetHoldings
trade TradeBean/getPorfolio,
.._client. TradeApp S ervetidatet.
: 0 20 40 80 0

400 120

o
452 Physical

Millise conds

oDeEn0 x

Figure 5-3 All Workloads workspace

All Workloads - Current Interval
Workload Sample Interval | Mumber af Rateof | Total | Average | Max | Mumber Sernviet Senvlet ¢
Type Class Name Method Mame Date ant‘?T\me Tirne Qeourrences | Occurrence | Time Timg Tirne Delays Delay Time | Del:
28| EJB Method | trade TradeBean |geiBalance 11402002246 |60 101 1.683 248 2 4 1] [1] 0.0 «
29| EJB Method | trade TradeBean | findAccount 11114102 00:22:46 | 60 206 3.433 348 |1 2 1} 0 0.0
=2| EJB Method | trade TradeBean | findQuote 11714102 00:22:45 | 60 1048 1.780 291 2 2 1] 1} 0.0
=2| EJB Method | trade.GuoteBean | _copyFromEJB 11/14i02 00:22:48 | 60 a0 0.833 28 1} 0 1} 0 0.0
22| EJB Method | trade QuoteBean | getObject 11/ 402 00:22:47 | B0 a0 0833 3 0 0 0 0 [
=2l E 1A Mathad trada MuntaRaon notCuwrnhnl A1 AMI NN 24T RN an naaa A n n n n nn _'I

Workload analysis is suited for all stages of application development,
deployment, integration testing, and production monitoring. You control which
servlets, JSPs and EJB methods are instrumented at start-up, then dynamically
control the collection of workload analysis data at runtime. Workload analysis
data can be displayed by workload or by resource.

Table 5-2 on page 164 provides a high-level summary of the major workload
analysis workspaces.

Chapter 5. PathWAI solutions for WebSphere

163

Table 5-2 Workload analysis workspaces

Workspace Function

All Workloads Displays average response times by workload. Graphically
breaks down the response times into delay components.
Use this workspace to detect poor response times and
bottlenecks for business applications.

Selected Workload Displays detailed information for a delay component (JMS,
Delays JNDI, SQL, etc.) related to an individual workload. For
example, displays average response times for each SQL
update request made by a workload.

Longest Running Displays response times for individual invocations of each
Workloads servlet, EJB method, and JSP that exceeds a response time
threshold. Graphically breaks down the individual response
times into delay components. Use this workspace to identify
users receiving the worst response times, when the average
response is good.

Datasources Displays details about each J2EE datasource accessed by
all workloads. Graphs average connection wait time, and
processing times for SQL queries and SQL updates for each
J2EE datasource. Use this workspace to determine whether
you have a bottleneck in your DB2 regions.

HTTP Sessions Displays information on the current active HTTP sessions
including the Web application name, IP address, and userid.
Graphically displays the number of HTTP sessions during
the last four hours. Use this workspace to monitor
throughput.

JMS Summary Displays details about each WebSphere MQ queue
accessed by all workloads. Graphs the average response
times for browse, put, and get requests for each queue. Use
this workspace to determine whether you have a bottleneck
in WebSphere MQ.

Additional workspaces provide alternative formatting for workload analysis data
for the current interval or across historical collection intervals.

Application trace

The application trace feature provides the ability to trace the inter-method flow
within an application.

Ideally suited for application development and testing, this feature utilizes the
instrumentation that is installed at start-up for workload analysis. Traces are
dynamically started at runtime for specific workloads. The trace file contains an

164 Monitoring WebSphere Application Performance on z/OS

entry for each method call, method return, workload start, workload end, and
thrown exception in the call flow for the workload.

Refer to Figure 5-19 on page 181 for an example of the Application Trace
workspace.

SMF Information

OMEGAMON XE for WebSphere Application Server provides a convenient way
to format SMF 120 interval records for J2EE and managed-object framework
(MOFW) servers.

This feature can be used in any environment where SMF 120 interval records
have been enabled. OMEGAMON XE intercepts the SMF records as they are
being written and extracts data for the classes, beans, and methods you select.

Using the formatting features of OMEGAMON XE, you can easily generate
customized views using filtering and sorting. You can also plot SMF data across
historical intervals.

CandleNet Portal™ Wushess at the speed of light

File Edit “iew Help
EEELND 582 O0QUEal B0 "E=®
@ €@ |ebusiness - ma x _—

= OMTSRYA = Ten Worst Average Response Times
- By Application Server Instance

- By Application Server Ovenview ,ﬁﬁ(
Bl Application Server Instance £ C

Bl JZEE Server Containers AT
.[BYy JZEE Server Beans gatfiotfalios
o==11.12EE Server Bean Methods o
- By Al Workloads

200 400 GO0 ana 1000 1200 1400 1600 1800 2000
Milliseconds

Bly Longest Running Workloads me o
---Bly Datasources e P o S0 0 A PG00 AL L RO L o o R0 R)) PR P s PR s o o |
Bl HTTF Sessions Ten Highest Invocation Rates
Bk IMS Surmmary
@l JyM Threads
Bly JYM Heap Usage getll
Bl JWM Garbage Collector Activil findByP rimarykey-
By JWh Method Summary 24
i | - _copyFromEJE g@‘;ﬂ P
————— dispateh £
422 ebusiness l 0 1 2 i 4 5 [2 8

m B8 n
JZEE Server Bean Methods SMF Interval Statistics

Bean hame hethod Mame Method Arguments | © Invocationﬂ Inv;t;?élon Res?\;er:saggﬂme Reshdpan}{::émme Loads anet'g
Trade Sample: Trade_\WebApp jar:Trade_We.. | dispatch 0 2140 7.166 1083 42964 0 0.000
Trade Sample: TradeEJBs jar TradeSession create Q 758 2536 1 7 1] 0.000
Trade Sample:TradeEJBs jar:TradeProfileBe... | findByPrimanddey | {rade Profilekey) 388 1.293 46 1447 266 0.886
Trade Sample: TradeEJBs jar:TradeProfileBe.. | _copyFromEJBE 0 250 0.863 44 7483 140 0466
Trade Sample:TradeEJBS jar:TradeRegistyvB... | findByPrimarylikey | (trade Rengistrley) | 263 0.242 N 2620 249 0.820

Figure 5-4 SMF Interval statistics for methods

For example, Figure 5-4 shows the J2EE Server Bean Methods SMF Interval
Statistics workspace. This workspace graphs the ten methods with the worst

Chapter 5. PathWAI solutions for WebSphere 165

average response time, and the ten methods with the highest invocation rate
during the SMF interval. This enables you to see at a glance whether your most
frequently requested methods are responding poorly.

JVM profiler information

OMEGAMON XE for WebSphere Application Server provides detailed
performance information from the JVM profiler interface (JVMPI).

This feature is best suited for development and test environments. The JVMPI
must be loaded at WebSphere start-up, then you control collection dynamically at
runtime. This feature does not require instrumentation of your applications.

JVMPI provides the following workspaces:

JVM Garbage Collector Activity
JVM Heap Usage

JVM Threads

JVM Methods

JVM Monitor Contention

JVM Method Summary

vVvyvyvyYYyy

For examples of the JVM Garbage Collector Activity and the JVM Heap Usage
workspaces, refer to Figure 5-26 on page 187 and Figure 5-27 on page 188.

Configuration and environmental data

OMEGAMON XE for WebSphere Application Server provides workspaces that
display configuration data including environment variables and JVM properties.
You can use these workspaces to determine whether your server instances are
configured correctly:

The Application Server Error Logstream workspace displays error messages
from the WebSphere logstreams. You can add situations to detect specific error
message IDs and add automation to take corrective action. Using Candle’s Alert
Adapter™ for AF/REMOTE® you can set up intelligent scripts that can escalate
problem conditions via audible alarms, pagers, third-party software, etc.

5.2.3 Monitoring the WebSphere environment

In 1.6, “Performance components” on page 18 we emphasize that this is a
complex performance environment with many critical components.

The performance of your WebSphere-based applications is dependant on many
components outside of the WebSphere Application Server. Candle offers
OMEGAMON XE agents for all these critical components, which can be
integrated using OMEGAMON DE to monitor your entire environment.

166 Monitoring WebSphere Application Performance on z/OS

Monitoring the TCP/IP network

OMEGAMON XE for Mainframe Networks can monitor any application that has a
TCP/IP connection open on z/OS. This information can be used to determine the
volume of data being requested from WebSphere Application Server.

In 5.4.6, “Example 8 - Static pages serving” on page 207 we use OMEGAMON
XE for Mainframe Networks to determine the impact on TCP/IP when the
WebSphere Edge Server servers are not caching static files. Refer to

Figure 5-63 on page 211 for an example of the Network Applications workspace
monitoring the byte rate for WebSphere Application Server.

Monitoring zSeries hardware and z/OS

OMEGAMON XE for OS/390 provides features to monitor the health of z/OS
hardware and software resources.

For example, OMEGAMON XE for OS/390 can be used to monitor the effective
weighting of your LPARs.

Looking at the CPC LPAR Status view in Figure 5-5 on page 168 we see that
production sysplex WTSCPLX1 is highlighted because it has an effective weight
index of 0.8, compared to an index of 10.6 for SANDBOX. In this case, this is not
a problem as the “logical weights” (definition) shows WTSCPLX1 as much
higher; it just doesn't have any workload at the moment.

Chapter 5. PathWAI solutions for WebSphere 167

3 LPAR Clusters - Microsoft Internet Explorer

IR
File Edit Wiew Favorites Tools Help ‘“
GBack + = - @ [@ | Qoeach [Favortes Fhrveda (4| By- S :Links ”‘

CandleNet Portal™
File Edit %iew Help

Wusiness at the spoed of ight

BeBmiad S 8oudal 3BT B

@ @'Physmal - mB x

5B WTSCPLX1:SC50MVESYS o

mBao x

LPAR Logical Utilization (e.g. Velocity)

meE QO x
LPAR Physical Utilization

Address Space CPU Liilizati |
Address Space Real Storage
Channel Path Activity

Effective %ilieight|

Erhysical %CPU
OLogical %witeight

B Fhysical %ifeight

Cornmon Storage
DASD Mv3

DASD MVS Devices
Enclave Information

Engueue and Reserve Sumr
LFAR Clusters

EEEEEEE

Operator Alerts

b}

4) |
L= ebusiness | 48 Physicali
mBEO x mBE O x
CPC Status LPAR Clusters
CPC CPC CPs CPs CPs Physical | ICF-IFL | CPs Cluster Fhysical | Owerhead | Current | Physical | Cluster
hiodel# Setial# | %CPU | %0verhead | Weight CFPs CFs M3LUs Narme WCPL %BCPL Vieight | %vveight | LPARS
2064-2C7 | 010ECB 257 5.3 630 T B 30C | 22| SANDBOX. OECE. 2064 3.0 0.3 30 4.8 3
Li I L‘ =8| NTSCPLXL.OECE. 2064 218 0.7 480 9232 7
mB 0o x
CPC LPARSs Status
Cluster lr LPAR | Physical | Overhead | Current | Physical | CPU | - Effective Logical t Effective Logical CPU LM Initial
Mame Mame %CPLU WBCPL Weight | %YWeight | Index %vyeight | %Weight Weight Index | %CPU | %Ready | Managed | Weight
WTSCPLX1.0ECE. 2064 129 0.1 180 286 0.5 80.4 100.1 452 11.0 | NO 180 AJ
SANDEOX. OECE. 2064 AS 1.1 01 10 1.6 0.7 59.2 5.6 10.6 a8 28| MO 10|
WTSCPLX1.0ECE. 2064 | A7 1.5 0.1 10 1.6 0.8 54.8 5.6 9.8 5.1 4.2 | MO 10
SANDEOX. 0ECE. 2064 alo 0.9 0.1 10 1.6 0.6 51.3 5.6 9.2 3.2 3.1 | NO 10
ﬁ?mnnx.nwﬂ.znﬁa el 1n ni n 1R na iﬁﬂﬂ AR a1 3A A31TNO n
1

As seen from System: 5C50
[@# Server Available

|Ready | LPAR Clusters - 3.12.0170:14000 - PETER

171 |4 Internet

@ hkkp: fivee, candle, comf

Figure 5-5 LPAR weights

Monitoring UNIX System Services

OMEGAMON XE for OS/390 UNIX System Services can monitor USS processes
for availability, looping, or scaling.

For example, WLM can dynamically create WebSphere server regions to handle
increased arrival rates. You can use OMEGAMON DE to monitor the number of
WebSphere server regions from the USS agent relative to the transaction
throughput from the WebSphere agent.

OMEGAMON XE for OS/390 UNIX System Services can also be used to monitor
HFS 1/O rates. We use this agent in 5.4.6, “Example 8 - Static pages serving” on
page 207 to determine whether there was an increase in HFS 1/O as a result of
WebSphere Application Server handling static pages. Refer to Figure 5-62 on
page 210 for an example of the 0S/390 USS Mounted File Systems workspace.

168 Monitoring WebSphere Application Performance on z/OS

Monitoring WorkLoad Manager

Ensuring that there are enough server instances and that each instance gets
enough CPU and memory is the job of the Workload Manager (WLM).
OMEGAMON XE for OS/390 allows you to determine whether your workload is
allocated sufficient resources. OMEGAMON XE for Sysplex provides a
sysplex-wide view of a service class so you can detect workload imbalances
between z/OS images.

Monitoring RRS and Coupling Facility

WebSphere Application Server and DB2 use RRS, which uses Coupling Facility
structures. In the ITSO configuration there are three DB2 subsystems in a DB2
data sharing group. DB2 data sharing has several critical structures in the
Coupling Facility (global buffer pools, locks, and SCA). The latter two are critical
to performance as they perform synchronous I/O, which causes the requesting
CP to wait until the request is satisfied.

OMEGAMON XE for Sysplex enables you to verify that all members of the data
sharing group are connected. You can also use this agent to alert you before the
Coupling Facility structures fill up.

Monitoring security

OMEGAMON XE for Crypto monitors cryptographic coprocessors on z/900s.
Configuration errors can result in co-processors not being used. Instead, the SSL
is encrypted and decrypted via software, which uses CPU cycles and may result
in workload slowdowns. None of the ITSO test examples have HTTPS or any
SSL, so this product was not installed.

WebSphere uses UNIX Systems Services and forks lots of threads, each of
which loads modules and potentially accesses the HFS. Access to these files
requires SAF calls to RACF and has the potential to impact performance.

You can use OMEGAMON XE for OS/390 to monitor the RACF address space
for excessive I/O and CPU.

Monitoring JVM

OMEGAMON XE for WebSphere Application Server provides detailed
information on the JVM, including garbage collection cycles and heap usage.
Refer to “JVM profiler information” on page 166 for more details.

Monitoring WebSphere

Refer to 5.2.2, “Monitoring WebSphere Application Server” on page 162 for
information on the features provided by OMEGAMON XE for WebSphere
Application Server to monitor WebSphere resources.

Chapter 5. PathWAI solutions for WebSphere 169

Monitoring connectors and subsystems

WebSphere Application Server can use connectors to obtain data from
subsystems such as DB2, IMS, and CICS. It can also be connected to back-end
systems via WebSphere MQ. OMEGAMON XE for WebSphere Application
Server monitors JMS, JDBC and JCA requests, which enables you to monitor the
use of connectors and MQ from a WebSphere perspective.

The following products enable you to monitor the use of connectors and MQ from
the subsystem perspective, as well as providing detailed information on
subsystem resources:

» OMEGAMON XE for CICSplex and OMEGAMON XE for CICS
» OMEGAMON XE for DB2plex and OMEGAMON XE for DB2

» OMEGAMON XE for IMSplex and OMEGAMON XE for IMS

» OMEGAMON XE for WebSphere MQ

Monitoring applications

Due to the complexity of the environment, there are many opportunities for
design errors to impact performance. The root cause could be in the application
or the system setup. We need to look at all the components, their connectivity
and load balancing to determine the source of the problem. OMEGAMON DE
enables you to integrate information from all the OMEGAMON XE products to
provide a single point of control for determining the source of a problem.

5.3 PathWAI configuration at ITSO

PathWAI Dashboard for WebSphere Infrastructure was installed in the ITSO
environment. This package is comprised of the following monitoring products:

— OMEGAMON XE for WebSphere Application Server
— OMEGAMON XE for OS/390 UNIX System Services
- OMEGAMON DE

The following monitoring products were also installed in the ITSO environment,
based on the requirements of the test applications and environment:

— OMEGAMON XE for CICSplex

— OMEGAMON XE for DB2

— OMEGAMON XE for Mainframe Networks
— OMEGAMON XE for WebSphere MQ

— OMEGAMON XE for OS/390

— OMEGAMON XE for Sysplex

170 Monitoring WebSphere Application Performance on z/OS

The agents were installed on all three LPARs (SC48, SC50 and SC52). The
agents were connected to a hub CMS on LPAR SC48.

Customized navigator view

By default, OMEGAMON XE displays data from the agents in a navigator tree
view organized by physical nodes. OMEGAMON DE provides the capability to
create customized navigator views to integrate performance metrics from
disparate platforms and components and map them to business applications.

We leveraged this capability to define an ebusiness navigator view that
represents the three applications in the ITSO environment:

» Trade2, for the Trade 2 application on the OMTSRVXx application server
instances, as well as performance data for DB2, TCP/IP, USS, WLM,
WebSphere MQ across the three LPARs

» Inventory Control, for the elTSO application on the OMESRVx application
server instances, plus DB2, USS, and WebSphere MQ

» EIS, for the PRR application on the OMTSRVx application server instances,
plus CICS, USS and WebSphere MQ

CandleNet Portal ™" {Candle
File Edit “iew Help

FeBLi® S22 aouUldadl 8RR TES

@ €2 |ebusiness [

= D

-y Trade2

EIEf Inventory Cantral

=85, DataServer

EIEL Database

¥ CF Structures
Elﬁ Data Sharing Group
DB4BSC48:DB2
-2 DB4C:SCENDB2
-8y DB4D:SCE2.0B2
=-u WehSphere

= AppServer

COMESRWA
OMESRYE
OMESRYC

g

By Maunted File Systems
LBy Processes

Figure 5-6 ebusiness navigator view

Chapter 5. PathWAI solutions for WebSphere 171

Figure 5-6 shows the ebusiness navigator view for the three applications,
expanded to show details for Inventory Control. The navigator tree for Inventory
Control includes the DB2 data sharing group, MQ queue manager, three
WebSphere application server instances, and USS mounted file systems and
processes across the three LPARs.

Customized business view

OMEGAMON DE provides the capability to display data from multiple agents
running on multiple LPARs into a single integrated workspace. With an
understanding of the PRR application, we created a customized workspace that
allows us to proactively monitor and display key metrics from WebSphere
Application Server, WebSphere MQ, CICS, and UNIX System Services (USS);
see Figure 5-7 for details.

CandieNet Portal™

File Edit View Help

Wusiness at the speed of light

HeBfid S 2 Bouitad 8ES T E&

@ € [ebusiness v| m B x meEO x DB x
o ebusiness CICS Transaction Analysis WebSphere MQ Queues
"lﬁ Tradel |l Transaction | Terminal Wait Elapsed
léf Inventory Contral I D Tiat Time Current Depth Gueue MName rotal @peny % Full | Get Statu:
ElH |l CEMT TCET Terminal 01:31:28.53 0| JMETEST.QUELE 1 0.0 | Enabled
+-Hgg Infrastructure I 0| JME.INITG 1 0.0 Enabled
TPMonitor 2| BYSTEM.CLUSTER.REPOSITORY.GL.. 2 0.0 | Enabled
=] lg, WehSphere |
ﬁ ApplicationGervers I | ol | |
WebhSpherea
-] p mBE O x I e o
JMS Summary M@ Listener USS Processes
BT ML Total | Mulfl Parent Process ID | ASID | Command Mame | Jobname | UNE Run Time%
Time | IR TMILIZT 0.00 | Gn
queusiMO4BIMSTEST. QUEUE 5 1 50659698 | 0085 |sh TMILISTZ 0.00] on
| queleMQ4BICSE BACCH1868F 94, 17 1 67436822 | 0071 |java IMSLISTS 0.01 [Mo
L= ebusinesslﬁ thSiCall Al | | K |
3] mE@ x
WebSphere Application Server - All Workloads
Nurnber af Rate of Total Average | Max JnS Uset-defined Total AwEram
Class Name Method Name Occurrences | Occurrence | Time i Time Time Delay Percent | Delay Percent | CPU Time | CPU Tin
_JMSResults_jsp_4 _ispService 1 0.018 603 603 (1K} 21.9 12.7 A8.784 A8.784
priceChangeSession.PriceChanges... | priceChangeSession |1 0.018 3845 385 3848 0o 0.2 323601 323601
itemEntityPackage. EJSBMP temEntity... | indByPrimaryiey 1 0.018 358 358 358 0. 0.0 301.373 301.373
itemEntityP ackage. temEntityBean ejbFindByPrimandey |1 0.018 326 326 326 0. 0.0 289.059 280.0588
itemEntityP ackage temEntityBean checkConnection 1 0.016 297 297 297 0.0 0.0 283.894 283.894

Figure 5-7 EIS business view

The CICS Transaction Analysis view displays task information for CICS region
SCSCERWI1. This region provides the CICS CTG support for application PRR.
This information is obtained from OMEGAMON XE for CICSplex.

The WebSphere MQ Queues view displays information on queue
JMSTEST.QUEUE from queue manager MQ4B used by the PRR application.
This information is obtained from OMEGAMON XE for WebSphere MQ.

172

Monitoring WebSphere Application Performance on z/OS

The JMS Summary view displays response time information for JMS requests for
server instance OMTSRVA. This information is obtained from OMEGAMON XE
for WebSphere Application Server.

The MQ Listener USS Processes view displays information on the USS
processes that get the messages from the MQSeries trigger queue and return
data on the reply-to queues for the PRR application. This information is obtained
from OMEGAMON XE for OS/390 UNIX System Services.

The WebSphere Application Server - All Workloads view displays average
response times for workloads on server instance OMTSRVA. This information is
obtained from OMEGAMON XE for WebSphere Application Server.

Refer to 5.4.3, “Example 4 - Identify a CICS TS response time problem” on
page 188 and 5.4.5, “Example 7 - Transaction hang or time-out” on page 200 on
how this custom business view can be used to quickly diagnose problems across
components.

Customized alerts

OMEGAMON XE provides the capability to set a warning and critical threshold
for any performance metric. These situations generate an alert on the navigator
tree view when a threshold is exceeded.

Using workload analysis you can set different response time thresholds for each
application based on required service levels. For simplicity, we set a 3 second
critical threshold for all workloads.

We created a situation to generate a warning alert when WebSphere is serving
static pages; refer to 5.4.6, “Example 8 - Static pages serving” on page 207 for
details.

Based on our understanding of the PRR applicatio, we created situations to
proactively monitor key metrics in WebSphere MQ and CICS. Refer to 5.4.3,
“Example 4 - Identify a CICS TS response time problem” on page 188 and 5.4.5,
“Example 7 - Transaction hang or time-out” on page 200 for details.

5.4 Analyzing the ITSO examples

5.4.1 Example 1 - Identify a DB2 delay in the application path

A specific user is experiencing slow response while other users work well.

Chapter 5. PathWAI solutions for WebSphere 173

In this example:

» We receive an alert on the navigator tree that a single invocation of a
transaction has exceeded the predetermined response time threshold.

» Using the Longest Running Workloads workspace we see the parameters
that the user specified to invoke this long-running transaction.

» We compare this invocation with the average response for the same workload
on the All Workloads workspace. We determine that long response is limited
to this one invocation.

» We drill down to the Selected Workloads Delays workspace to understand
typical delays for this workload.

» To further diagnose this problem, we run an application trace for this
transaction using the same input parameters and discover that a single SQL
query is returning thousands of rows of data for this user.

Procedure

1. We receive an alert on the ebusiness navigator tree. Position the mouse
pointer over the alert (red triangle icon) to show details. Figure 5-8 on
page 174 shows that the Inventory Control transaction has a critical alert for
server instance OMESRVA. Alert WAS_LongRun_Resp_Critical indicates that
one or more workloads have exceeded the response time threshold for a
single invocation.

CandleNet Portal ™

File Edit “iew Help
FEBENM AN S Bouital @R rEd
@ €} |ebusiness =

[E Trade?

ﬂ Inventory Control
=--u8, DataServer
E----ﬂ WehSphere
=4} AppServer

A Amcoo e

4 CRITICAL
@9|ms_LongRun_Resp_CriticaJ. OMESEVA:SCA3:kWwT 11/253/02 04:18:1¢6

|Select wotkspace link button to view event results.

Figure 5-8 Alert WAS_LongRun_Resp_Critical on the ebusiness navigator tree

174 Monitoring WebSphere Application Performance on z/OS

2. Click the link button for WAS_LongRun_Resp Critical in the critical alert
window to display the Current Situation Values table. Figure 5-9 displays one
servlet and three EJB methods that have exceeded the response time
threshold. For example, the servlet has a response time of over 9 seconds

(9307 ms).
i RE%DW?QSE agr:neer WDTLKADESU Clags Name Method Marme
OMESREYA | Serviet _0OSResults_jsp_2 _ispSemviceiwarehouseld=26,custam...
OMESREYA | EJB Method | orderStatusSessionPackane OrderSt.. | orderStatusSession{"orderStatusSes. ..
CMESREYA | EJB WMethod | customerEntityPackage EJSBMPCuUst.. | findCustomerByLastMame"MIM" 26,2,
CMESEYA | EJB WMethod | customerEntityPackage.CustomerEnt... | ejbFindCustormerByLasthlamed" Ik, ..

Figure 5-9 Current situation values
Clicking the link button in Figure 5-8 on page 174 also expands the navigator
tree to display the Longest Running Workloads selection for instance OMESRVA.

3. Select the Longest Running Workloads workspace for server instance
OMESRVA.

CandleNet Portal
File Edit View Help

EErmmiid S8 BQuikad BB

Meﬂusiness at the speed of fight

@ 3 [ebusiness -] mBe x|E8 mBeE O x
ehusiness . |

-fﬂ Trade2 Delay Times for Longest Running Workloads

- ﬁ Inventary Caontral i [JEJB Home Delay Time

DataServer
H Eﬁ WebSphere
: =48 AppServer
© =-Bg OMESRVA
[IENER L ongest
[
Lo More,
¥ hiore..
Mare:

EEJB Method Delay Time
CEJB Remate Delay Time
EJms elay Time

LJuNDI Delay Time

T Delay Time

O tizcellaneous Delay Tima
W Hetwork Socket Delay Time
E=0L connection Delay Time
M S0L Query Delay Time

...merEntityBeanfejbFindCusta. .

Running cload

s ...ntityHomeBean/findCustomer...
_LongRun_Resp_Criti

_OSResults jsp_2/_jspSenvice

(] i
o es e e
4 | Lu 0 2000 4000 8000 2000 10000 El=rlneelay i
42 shusiness Milliszconds
meE O x
Longest Running Workload Instances - Current Interval
Workload Response | Mumber EJB EJB Method | EJB Method MNurmbe
Type Heps ikl Meadane IPAddress | “qio" | wethod Delays | Delay Time | Delay Percent | GuenC
22| EJB Method | orderStatusSessionPackage.CrderSt.. | orderStatusSession(orderStatusSes.. [912.0170 |[9214 13 9212 §9.9 1]
= Sernet _OSResults_jsp_2 _jspSemice(warehouseld=26 custom _ |9.12.0770 | 9307 il 9314 EEN] 0
28| EJB Method | customerEntityPackage EJSBMP Cust.. | findCustornerByLastameMIN' 26,2, [9.12.0170 | 8520 2 94189 499.9 0
22| EJB Method | customerEntityPackage. CustomerEnt... | ejbFindCustomerByLastMamed MIN',... [9.12.0170 | 8512 72004 636 7.4 1

Figure 5-10 Longest Running Workloads workspace

The bar chart view in Figure 5-10 shows that four workloads have exceeded
the response time threshold for an individual invocation. In this example, the
response times are greater than 8 seconds (8000 ms).

Chapter 5. PathWAI solutions for WebSphere 175

We use the bar chart legend to analyze what these workloads are doing:

— Three workloads are spending most of their time waiting for other EJB
methods (blue on the bar chart). We can’t tell anything from these
workloads. We need to focus on the downstream methods that are doing

useful work.
— Response time for the fourth workload is composed of the following
delays:
Calls to other EJB Methods Blue on the bar chart
Miscellaneous delays Lilac
SQL Queries Purple
User-defined delays Aqua

We want to discover if there is something unique about this invocation of this
function. We start by determining the parameters specified by the user.

4. Looking more closely at the table view for the Longest Running Workloads
workspace in Figure 5-10 on page 175, we sort the table to display the
longest response times first.

method Mame

_jspServicefwarehouseld=26,customerld=1 2, CMPBEMP=falze,customerLasthame=mMIn districtld=26 command=Manual)

orderStatusSession(orderStatusSessionPackage. OrderStatusinput4 6013473

findCustomerByLastMamed" MIMN", 26,26 false)

gibFindCustomerByLasthame"MIN" 26,26 false)

Figure 5-11 Longest Running Workloads Method Names and parameters

In Figure 5-11 we widen the Method Name field to see the parameters that
were input to the servlet and passed to orderStatusSession and the other
methods:

— warehouseld=26

— customerld=12

— CMPBMP=false

— customerLastName=MIN
— districtld=26

— command=Manual

We know from Figure 5-10 on page 175 that three of the workloads are
waiting for other EJB methods. These will not help us understand why the
response time is slow. We want to examine the method that is performing the
business logic. We deduce that ejbFindCustomerByLastName is the method
that is performing the business logic. We want to understand where this
method is spending its time. We see the following response time delays for

176 Monitoring WebSphere Application Performance on z/OS

method ejbFindCustomerByLastName in the Longest Running Workload
Instances table in Figure 5-10 on page 175:

wethod Mame

Mumber EJB
Method Delays

EJB Meathod
Delay Time

EJB Methad
Delay Percent

Murmber SGL
Guery Delays

SGL Queary
Delay Time

SaL Query
Delay Percent

ejbFindCustomerByLasthame"MIN" ... | 72004 636 74 1 3073 36.1
Figure 5-12 Long Running: EJB Method Delays and SQL Query Delays
Method Narme MNumber Userdefined | User-defined | Mumber Miscellaneous | Miscellaneous | Miscellaneous
User-defined Delays Delay Time Delay Percent Delays Delay Time Delay Percent
ejbFindCustomerByLastMame("MIMN",... | 144000 a4a7 6.5 2 4246 4498

Figure 5-13 Long Running: User Defined Delays and Miscellaneous Delays

From Figure 5-12 and Figure 5-13 we see that the response time for method
ejbFindCustomerByLastName is broken into the following delay categories:

EJB Method calls 636 ms
SQL Queries 3073 ms
User defined delays 557 ms

Miscellaneous delays 4246 ms

We also see that the number of SQL Query Delays is one, so the 3-second
delay for SQL queries is attributed to one SQL call. This single execution of
ejbFindCustomerByLastName is making 72004 EJB method calls, and 14400
calls to a user-defined method. This transaction is doing a lot of processing
for a single query.

We want to understand how these response times compare with a typical
execution of method ejbFindCustomerByLastName. If all invocations of this
method have a long response time, then we may have a WebSphere or
system problem. If this specific invocation is the only one with long response,
then we need to understand what is unique about this invocation.

5. Select All Workloads from the ebusiness navigator tree.

Chapter 5. PathWAI solutions for WebSphere 177

File Edit View

CandleNet Portal "

Help

Wusiness at the speed of light

EeBLiidEd See Bouidal 3BT B

@ & [ebusiness |

e

me0

X

& ebusiness
M8, Trade2

-

=8 Inventory Control
Mg, DataServer
- wensphere
8 AppServer
R

OMESRYA

Bk Application Setver Instance
By Application Server Cwverview
Bk Application Setver Instance £
Bl J2EE Server Containers

B JZEE Server Beans

Bk J2EE Server Bean Methods

Ten Worst Average Response Times

ejbFindByCld AndDicdAnchiyic
findByCld AndDiclAnch/ld

getOrdel

_izpService g,
getCustomerByl ssthlame
_ispService
orderStatusSession

deliverySession

CuTA pelay

OsoL conn

[JEJB Home Delay Time
HEeJp Method Delay Time
[IEJB Remote Delay Time
EJns pelay Time
CIunD! Delay Time

[EMiscellaneous Delay Time
B Hetwok Sodket Dalay Time

B S0oL Query Delay Time
B S0l Update Delay Time

Time

action Delay Time

spService M seriet Delay Time
ino Workloads T _ispSarvice Ouserdefined Dalay Time
4 e i 10000 20000 30000 40000
42 ehusiness Milliszconds
Page:| 1 of3 @D B O X
All Workloads - Current Interval
Waorkload Sample Nurmber of Rate of Total Average | Max | Numlt
Type B B MR Date anngme Occurrences | Occurrence Time | Tlmg Time C |
28| EJB Method | deliverySessionPackage DeliverySes... | deliverySession 11/35i0204:32:30 | 188 0.330 394403 1981 34876 |0 :[
=2| EJB Method | orderStatusSessionPackage OrderSt.. | orderStatusSession 11/25i02 04:23:08 | 195 0.325 238376 1222 16366 |0 =
28| EJB Method | orderStatusSessionPackage OrderSt.. | getCustormerByLastMame 11/25i02 04:33:04 |76 0126 BE462 874 158 1]
=8| Serviet _MOAGResults_jsp_1 _ispSenvice 11/25i02 04:22:58 | 2043 3.405 1424168 | BA7 52431 |0
23| EJB Method | neworderSessionFackage NewOrder... | newOrderSession 11/25i02 04:22:24 | 2043 3.4048 1252580 | 613 g0732 |0
=8| EJB Method | pa ionPackage.Pa ionBean | pa ion 11/25i02 04.22:08 | 2025 3378 501954 247 38647 |0
22| EJB Method | orderStatusSessionPackage OrderSt.. | getOrdetlines 11/25i02 04:23:07 | 195 0.325 31830 163 4628 1]
28| EJB Method | paySessionPackage PaySessionBean | getwarehouselnstance 11/35i02 04:32:00 | 2025 3375 261652 129 17821 |0
=2| EJB Method | warehouseEntityPackage EJSEMPYY findByPrimarykey 11/25i02 04:22:38 | 4070 B.783 493131 121 30351 |0
=] EiEl Method | delivervSessionPackaae Del\\renfSels... nrocessOrderlinelnstance 11/28/0204:22:31 11871 3.285 231657 117 20563 |0 _Iﬁ
1 3

Figure 5-14 All Workloads workspace

Looking more closely at the table view from the All Workloads workspace
in Figure 5-14, we filter by Method Name=ejbFindCustomerByLastName.
Then we see the response time categories for an average invocation of
ejbFindCustomerByLastName:

Method Marme Average | MumberEJB | EJB Method | EJB Method | Mumber SGL | SGL Query S0OL Guery
Time Methiod Delays | Delay Time | Delay Percent | @uery Delays | Delay Time | Delay Parcent
gjbFindCustomerByLasthame | 60 5238 19 3248 347 14 2549

Figure 5-15 Average: EJB Method Delays and SQL Query Delays

Method Marme Average Mumber User-defined | User-defined | Mumber Miscellaneous | Miscellaneous | Miscellaneous
Time User-defined Delays | Delay Time | Delay Percent Delays Delay Time Delay Percent
ejbFindCustomerByLastName | 60 Taoz 2 37 BT 22 X

Figure 5-16 Average: User Defined Delays and Miscellaneous Delays

178

In Figure 5-15 and Figure 5-16 the average response time for method
ejbFindCustomerByLastName is 60 ms. We compare this with the 8-second
response we saw for one invocation of ejbFindCustomerByLastName in

Monitoring WebSphere Application Performance on z/OS

Figure 5-10 on page 175. We deduce that the problem is limited to this one
long-running invocation.

The average response time is broken down as follows:

EJB Method calls
SQL Queries

User defined delays
Miscellaneous delays 22 ms

19 ms
15 ms
2ms

We also see that the typical execution in Figure 5-15 on page 178 makes
5239 EJB method calls compared to 72004 for our example in Figure 5-12 on

page 177.

We want a better understanding of the typical execution to see if we can
deduce why our example is performing so poorly.

Workloads table view to navigate to the Selected Workload Delays
workspace.

CandleNet Portal "
File Edit View Help

Click the link button for method ejbFindCustomerByLastName on the All

Wusiness at the speed of light

EerBEniad S8 B0uwdad Il B

@« |ebusiness |

x

o e

k3

) ebusiness

[+ 4g, TradeZ

B Invventary Gantrol
=M DataServer

Eﬁ WebSphere

-

Selected Workload Delay Average Response Times

x

SOL Queny

¢

ClassName:customerEntityPackage.CustomerEntityBean MethodName:ejbFindCustomerByLastName

=8 AppServer Register Transaction Sync Object 54/‘4
OMESRVA
Method C u;’fl;
By Application Server Instance S
o Application Server Quetview | EJB Method Call o~ 7
ky Application Server Instance £ EJB hiethod Call [
s JZEE Server Containers 5 e [
s JZEE Server Beans il et
Server Bean Methods Ueitiverd] Gl /1
ds Wethod Call.
ly Longest Running Workloads il
A B nian 1 Do Dwﬂ EJE Method Call
« E__ LI 0 1 B 3 4 & 5 7 [
45 ehusiness Milliseconds
mDED
Selected Workload Delays - Current Interval
Delay Delay Delay Sample Interval
Tvpe Major Mame Minor Mame Date and Time Time
=2| SQL Query java compienyiidbcIRWWDE SELECT ¢_id, c_d_id, c_w_id FROM CBIVP custornerl] 11/25/02 04:32:47 | 599
23| EJB Method Call customerEntityPackage. CustomerEntityBean checkConnection 11/25i02 04:32:46 | 588
== Prepare SGL Statement java compienyiidbcIRWWDE SELECT c_id, c_d_id, c_w_id FROM CEIVP custormerDl] 11/25002 04:32:46 | 589
&3| EJB Method Call custormerEntityPackage. CustamerEntityBean dropConnection 11/25i02 04:32:46 | 598
23| EJB Method Call customerEntityPackage. CustomerEntityBean debugOut 11/25i02 04:32:47 | 538
22| Method Call customerEntityPackage.CustormerEntityBeanglter c_d_id 11/25i02 04:32:47 | 599
23| Method Call customerEntityPackane. CustomerEntityBeanslter c_w_id 11/25i02 04:32:47 | 588
=1 Mi'-nhnﬂ Call rustnmerEntivParkane CustametEntivRranbiter r i 11/38N7 N4-32-47 | 599
]

Figure 5-17 Selected Workload Delays workspace

Chapter 5. PathWAI solutions for WebSphere

179

The table view for the Selected Workload Delays workspace in Figure 5-18
displays the functions that are performed by an typical execution of method
ejbFindCustomerBylLastName.

We see a Prepare SQL Statement and SQL Query for a SELECT statement to
datasource IRWWDB. We also see calls to user-defined methods from the
customerEntityPackage. We can pass this information to the application
support team or database administrator to start problem diagnosis.

Delay Delay Delay
Type ajor Mame Minor Mame
SQL Query javacomplenvidhol RvWWDB SELECT c_id, c_d_id, c_w_id FROM CBIVP.customerQd
EJB Methad Call customerEntityPackage CustomerEntityBean checkZannection
Prepare SQL Statement java:complenvidhcl RVWWDEB SELECT c_id, c_d_id, c_w_id FROM CBIVP.customerQd
EJB Methad Call customerEntityPackage CustomerEntityBean dropConnection
EJB Method Call cugstomerEntityPackane. CustomerEntityBean debugOut
Methad Call customerEntityPackage CustomerEntityBean§liter c_d_id
Method Call customerEntityPackane CustomerEntityBean §lter c_w_id
Methad Call customerEntityPackage CustomerEntityBean§liter c_id

Figure 5-18 Selected Workload Delays table view

From Figure 5-11 on page 176 we can also provide the parameters that were
input to the servlet that resulted in the long response:

— warehouseld=26

— customerld=12

— CMPBMP=false

— customerLastName=MIN
— districtld=26

— command=Manual

Detailed problem analysis

In order to understand why specific parameters cause a long response time
for the orderStatus transaction, we trace a second execution of this
transaction with the same set of input parameters.

Depending on the business function performed by a transaction, it may not be
possible to run the transaction again without impacting the integrity of the
data. For example, you cannot repeat a transaction that removes money from
a bank account. In that case, the application support team can run the
application trace in a non-production environment with a copy of the
database.

We know from Figure 5-17 on page 179 that the orderStatus transaction does
an SQL query, but does not perform any SQL updates. We determine that it is
safe in our environment to invoke the orderStatus transaction with the same
set of input parameters.

180 Monitoring WebSphere Application Performance on z/OS

Dynamically start an application trace using the Take Action command WAS390
Start Application Tracing, then submit the orderStatus transaction with

the same parameters.

2. Select Application Trace from the navigator tree, and link to the trace.

Method Name I'EI':E? Object FParameters
executeduery | Method Entry | COM.ibm dbh20s380.5glj jdhc. DBE25QLIPreparedStatement.. | javacomplenyjdbolIRWAWDRISELECT ¢_id, ¢
execiUteciuery | Method Exit COM.ibm.db205350.5q]j jdbc.DB25ALIResultSet@439fb40d

et Method Entry | COM.ibrm.db205390.50]jjdbc.DB2EALIResultSet@439fba0d | java:complenvijdbeIRWWDB/SELECT ¢_id, ¢
next Method Exit

next Method Entry | COM.ibm.db2os390.500).jdhe.DBZESALIResultSeti@d 29M40d | java:compl/enjdboRYWWWDBISELECT ¢_id, ¢
next Method Exit

et Method Entry | COM.ibrm.db205390.50]) jdbc. DB2EALIResutSet@439fba0d | java:complenvijdbeIRWWDB/SELECT ¢_id, ¢
next Method Exit

next Method Entry | COM.ibm.db205390.5glj.jdhc.DBZEGLIResultSet@4 33t 40d | java:compienvjdbc/IRYWWWDBISELECT ¢_id, ¢
next Method Exit

Figure 5-19 Application Trace

Figure 5-19 contains an extract from the application trace, showing calls from
method ejbFindCustomerByLastName. We see that this transaction calls
method executeQuery with a SQL SELECT statement, then repeatedly calls
method next to process the next row in the result set. There are thousands of
calls to method next in the complete trace.

We determine that the long response time on this invocation of orderStatus is
due to the large amount of data being returned by DB2. At this point we turn
the problem over to the application support team to determine if this condition
is expected.

5.4.2 Example 3 - Detect a memory leak

There is a memory leak in one of the applications. In this example:
1. We receive an alert on the ebusiness navigator tree.

Position the mouse pointer over the alert (red triangle icon) to show details.
Figure 5-20 on page 182 shows that the Inventory Control transaction has a
critical alert for server instance OMESRVA. The alert

WAS Workload AvgResp Critical indicates that one or more workloads have
exceeded the threshold for average response time.

Chapter 5. PathWAI solutions for WebSphere 181

CandleNet Portal ™

|Candle
File Edit “iew Help

ReBLim See duidal @R ITES
@ €7 |ebusiness

E Trade?

Eﬁ Inventory Control
My DataServer

SRAT O

A CRITICAT

@| WAS Workload AvgResp Critical CMESRVA:SC48:KWWT 12/17/02 01:26:22

|Se|ect warkspace link button to view event results.

Figure 5-20 Alert on the navigator tree view

2. Click the link button for WAS_Workload_AvgResp_Critical in the critical alert
window to display the Current Situation Values table. Figure 5-21 displays one
servlet (method name _JSPService) and one EJB Method (deliverySession)

that have exceeded the response time threshold. For example, the servlet has
an average response of over 4 seconds (4459 ms).

Average Server VWarkload Mumber of
iRy Time Mame Type Llzs Wame gt [Fzme Occurrences
CMESRWA | Servlet _DEAGResults_jsp_3 _ispService 24
OMESRWA | EJB Method | deliverySessionPackage DeliverySessionBe. .

deliverySession |25

Figure 5-21 Current situation values

Clicking on the link button in Figure 5-20 also expands the navigator tree to
display the A11 Workloads selection for instance OMESRVA.

3. Selectthe A11 Workloads workspace for instance OMESRVA.

182 Monitoring WebSphere Application Performance on z/OS

CandieNet Portal ™
File Edit “iew Help

Wusiness at the speed of light

Hemfidmd S 2 B80udal BB T E®

@ 42 [ebusiness -

m B x|

8

& ebusiness -
(- M8, Trade2
Elﬁ Inventary Contral
[-Mg}, DataServer
Eﬁ WehSphere

=48y AppSerer
=B OMESRYA
Bk Application Server Instance
Bl Apnlication Server Overview
Bl Apnlication Server Instance £
By JZEE Server Containers
Bk JZEE Setvet Beans
Bk J2EE Server Bean Methods
All\Workloads

Ten Worst Average Response Times

paySession:

getOrderlines: ‘ -

dloGet CIUNDI Delay Time
_ispService > OuTA pelay Time
orderStetusSession PRI 22 O Miscellaneous Delay Time

_ispService

neworderSession

_ispService:

[IEJB Home Delay Time
EEJE Methad Delay Time
CIEJB Remote Delay Time
Einds Dalay Time

W s0L Query Delay Time
B S0l Update Delay Time
M serlet Delay Time

B Hetwok Socket Delay Time
=0l Connection Delay Time

B Lonoest Running Workloads T _isnService Oluser defined Gelay Time

l L 0 1000 2000 2000 4000 5000

4E shusiness Milliszconds

i Page:[Tof1 D B3O x

All Workloads - Current Interval
Warkload Murnber af Average | NumberSQL | SOL Update | SQL Update Hurmber
Type ket s i) (i Oceurrences W Time Update Delays | Delay Time | Delay Percent | JMS Delays =

25| Servlet _DEAGResults_jsp_3 _jspSenice 24 4459 1313 132 29 1] N
== EJB Method | delivenySessionPackage.DeliverySes... | deliverySession 25 3433 120 12 0.3 0
z2| Serviet _MNOAGResults_jsp_3 _ispService 2302 1221 11720 12 1.0 0 —
22| EJB Method | neworderSessionPackage NewCrder... | newOrderSession 2301 1044 1] 1] 0.0 0
z2| Serviet _DBAGResults_jsp_4 _ispService 24 631 1] 1] 0.0 0
==| EJB Method | orderStatusBessionPackage OrderSt. | orderStatusSession 24 524 1} 1} 0.0 0 =

Figure 5-22 All Workloads workspace

The bar chart view in Figure 5-22 shows that the workload with the worst
average response time is a servlet (class name _DEAGResults_jsp_3,
method name _jspService). This servlet is spending most of its time waiting
for EJB Method calls (blue on the bar chart). Reviewing the other workloads in
the bar chart view, there is no significant time waiting for resources such as
JMS, SQL, or user-defined resources.

We want to understand if the long response time for this servlet is a one-time
occurrence or a persistent problem, so we review the average response time
for this workload over the last hour.

Either click the link button on the All Workloads table row for method
_jspService, or right-click on the bar representing _jspService in the All
Workloads bar chart view to navigate to the Selected Workload - History
workspace:

Chapter 5. PathWAI solutions for WebSphere 183

CandleNet Portal ™
File Edit ‘“iew Help

lmﬂusiness at the speed of light|

NG R L |

Sef aoubkad @@l 7B

@ €2 |ebusiness

= e x|@

B, Trade2

=48 Inventary Contral

B}, DataServer

=8, WebSphere
=4 AppServer

4|

=B OMESRYA

- B Application Server Instance
By Application Server Ovarview
Bk Application Server Instance SMF Interval Stati
BEky JZEE Server Cantainers
B J2EE Server Beans
Bl JZEE Server Bean Methods
[T 2l Wiorkloads

Selected Workload Average Response Times - Last Hour

spuoaE iy

a000 |

5000

&
g

w
=5
=)
S

2000

1000

LJEJE Home Dalay Time
HEJB Method Delay Time
CEJB Remote Delay Time
EuMS Delay Time

Clunpi Delay Time

T4 Dalay Time
Ciscellaneous Delay Time
W Hetworn Socket Delay Time
EsoL connedtion Delay Time
B s0L Query Delay Time

B 5L Update Delay Time
W Serlet Delay Time

Selected Workload - History

0
& ebusinessl 1241702 01:50:00
mE DO mHEO

i Mumber of Ayerage

© Recording Time | Method Mame| o0 o0 0o T\mg
13M7I0202:25:00 | _jspBenice 24 5204

1211702 02:20:00 | _jspService 20 4715

121702 02:15:00 | _jspBService 19 4909
121702021000 | _jspService 25 4712
13M7I0202:05:00 | _jspBenice 18 4559

1211702 02:00:00 | _jspService 29 4405

121702 01:55:00 IsnEervice 27 37a8 _I_'I

1 r

ClassName: DEAGResults jsp 3 MethodName: jspSe...

Selected Workload Occurrences - Last Hour

L m OlHumber of Decurrences

1244702 01:50:00

Figure 5-23 Selected Workload - History workspace

184 Monitoring WebSphere Application Performance on z/OS

Figure 5-23 contains two bar chart views:

— The Selected Workload Average Response Times view shows that the
average response time for this workload has been increasing over the last

hour.

— The Selected Workload Occurrences view shows that the number of
occurrences for this workload has varied over the last hour, but the overall
trend is slightly decreasing.

One possible explanation is that the overall throughput for this server instance
has increased causing the average response time for this workload to

increase.

Select HTTP Sessions from the navigator tree view. Figure 5-24 on page 185
shows that the number of HTTP sessions has decreased over the last hour.
We know that the number of HTTP sessions has decreased, yet the average
response times have increased over the last hour. Also, we do not see any
alerts on the navigator tree for the connected systems, so we do not appear
to have a system problem. One possible explanation is that we are running
low on memory, causing the application server instance to spend more time
on garbage collections, at the expense of transaction throughput and

response times.

CandleNet Portal " Wusihess at the speed of light|

File Edit View Help

BEBRRdD S22 80uUdad 3B TE®

@ 42 [ehusiness ~| m e x | m B
g ebusiness :
-4 Tradez Number of HTTP Sessions - Last Hour
=48 Irventory Conral okt
¥ DataServer "
=5 ‘WehSphere Q40
Eﬁ', AppServer 20
=g OMESRVA
Bl Application Server Instance 200
--[Bhg Application Server Overview 280
-[Bhg Application Server Instance £
- Bl JZEE Server Cantainers 360
- B J2ZEE Server Beans A
Bl J2EE Server Bean methods
220
300
780
1Bl JyM Threads &y
- Bk WM Heap Usage 740
- By JVM Garbage Collectar Activil
I AL kA b et D e A e 720
4
700
<88 shusiness I 121702 D1:50:00 127702 01:56:00 121702 02:00:00 12A702 02:05:00 121702 D2:10:00 121702 02:18:00 121702 02:20:00 12702 02:25:00
mB 0
HTTP Sessions - Current Interval
Sample Session | ¥Workload Create Date | Creating | Associated | ‘Web Application | LastAccessed
Date and Time 10 Type Clees ik || Wil e and Time | IP Address | Aftributes Mame Time

Figure 5-24 HTTP Sessions workspace

6. Select Application Server Overview on the navigator tree view. The
Application Server Overview table view in Figure 5-25 on page 186 shows
current JVM memory usage for the two server regions for this instance. We
plot the JVM memory use over the last hour for one of the server regions (it
doesn’t matter which). We see that the memory use has increased
significantly over the last hour.

Chapter 5. PathWAI solutions for WebSphere 185

CandleNet Portal™ Imﬂusiness at the speed of light

File Edit ‘“iew Help

HEBERNT 5S¢ Buidal 8RB -E
@ @Iebusmess - mEp oHs
i “.d.m?:ww”\l‘c‘étlor;Ser;ter.ln.siance ;t JYM Memory Use - Last Hour

‘WSDDDDDDD‘l | | ‘ |

- 130000000 |
By JZEE Server Bean Methods |

-y Al Workloads

Bk Longest Running Workloads 110000000 //\ il Total Memory Size

By Datasources \ / | v Used Wdemory Size |
Bl HTTP Sessions S

-Ehg JMS Surmnmary
- [Ekg WM Threads

| B WM Heap Usage 70000000 -t
| | Bk I Garbaule CDIIectDrAcT‘L{ /
I v |
= == 50000000 |
£ shusiness I 12117702 01:504 1217102 D1:55:00 1201702 DZ:00:00 1211702 D2:05:00
) = =]
Application Server Overview
Sample Date uUss JyM Free Jyitd Tatal Jyhd Used
and Time Process ID | Memory Size | Memory Size | Memory Size genver Mame

T2M7002 02:23:37 | 84214044 | 41144888 134543872 | 93308976 OMESRWA
12M7I02 02:20:25 | 84214048 | 32028432 134543872 | 102515440 | OMESRVA

Figure 5-25 Application Server Overview workspace

This workspace samples the JVM memory use at regular intervals, but it does
not show when the garbage collector is running, so it cannot show the
minimum memory used after each garbage collection. However, the overall
increase in memory use in conjunction with the increased response times and
decreased throughput are sufficient indicators to justify enabling the JVM
profiler interface and recycling the server region.

7. Let the application server run for a while, then select JVM Garbage
Collections on the navigator tree.

The Garbage Collections / Interval view on the JVM Garbage Collections
workspace from Figure 5-26 on page 187 shows that the number of garbage
collections has increased steadily over the last hour, and has increased
exponentially in the last ten minutes.

The Bytes Free After Garbage Collection view on the JVM Garbage
Collections workspace shows that the amount of free storage has decreased
linearly over the last hour, from 80 MB to 10 MB.

The %CPU Used view on the JVM Garbage Collections workspace shows
that CPU usage by the garbage collector has increased non-linearly over the
last hour. The garbage collector is currently using about 17% of the CPU.

186 Monitoring WebSphere Application Performance on z/OS

CandleNet Portal™ m[reﬂusiness al the speed of light]
File Edit View Help
HE®Bnid S8 Bouital aB@eree
@ #ffebusiness | mBE > |g& mBe 0 x| mAan
Iﬁé‘bdéiné‘éé”””” T —— e A I s,
=i Tradez Garbage Collections f Interval - Last Hour | Bytes Free After Garbage Collection - Last Hour
E--ﬁ Inventary Contral 350 20000000+
=8, DataSenier i e ‘ |
=] WiehSphere ; || 7onooooo }
EI‘E, AppSerear 230
A0000000
= OMESRYVA o
- [Ehy Application Server i 30000000
By Application Server | |
- By Application Server 50— + + l l + + + - 10000000+ + + + + + + l =
B e 5] o s = = s = = [
By JEESenerContle LS igiig m 2 a2 2 5 s s s s s e
By JIEE Server Bean R e e e e T = g 2 = 2 2 2 2 g
Bk JZEE Server Bean 5 5 S 3 2 1 S 2 1 g 3 2 S S 2 2 S 3
] i e & o & 2 i i % & i o & 2 g i i p
- By All Yorkloads 2 o 2 a =2 o 154 o o 2 o = 2 B 2 = a5l =
B} Langest Running e : L i Shied Beg
I
- B Datasources
[T]
Bly HTTF Sessions @ SRR 0 e :
- By IMS Summa
= oy %CPU Used - Last Hour
I
-[Ehy WM Heap Usage 17 T
LY Col| ! i =]
- [Ehy JWM Method Surmin 1 |
-
- 7 :
! |
[+ M8, MOSeries i v 7 f f \ i
lg: uss g g] B £ B -z i i
=-ug B8 g g g g g g g g g
2 g 5] = g 5] =] 2 g
0| |] 8 2 5 = = 5 5 g =
2 a =2 = = =] = 8
< shusiness | g g g g g g = g g

Figure 5-26 JVM Garbage Collections workspace

It appears that we have a memory leak. The garbage collector is running
more and more frequently, yet the JVM Heap is running out of memory.

8. Select JVM Heap Usage on the navigator tree view. The Ten Highest Heap
Size view in Figure 5-27 on page 188 shows that one class,
weberwwno/NOController$NewOrderData, is using 160 MB of heap memory
(168,245,616 bytes). This class is the likely cause of the memory leak

problem.

Chapter 5. PathWAI solutions for WebSphere 187

File Edit

CandleNet Portal ™

Wiew Help

Wusiness at the speed of ight|

FEBmin S Buidtal 8@ "B

4]

45 ebusinessl

@ ¢ [ehusiness | mBe x meaa
—— : . i i
=4 AppServer = Ten Highest Heap Size
= OMESRVA

- Bl Application Server Instance f

Bl Application Server Overdew COMYibmAdbZ 0=380/sq|jfjd bedD B2 SALIIDBC S ection /
- By Application Server Instance £ ¢ i ontra ckinafM. Data /
--[Bhg J2EE Server Containers S
- [Blg JIEE Server Beans S
.} J2EE Server Bean Methods COMibmidbZ2 0s380/5q])idb DB2SOLIIDEC Cursor. /

B All iorklioads javarutiltH ashM ap$Entnyq

H
-Bhy Longest Running Workloads g
- By Diatasources [z
B HTTP Sessions JavallangiClass.
i i htabledEnt
- Bhg JMS Surmmary javahutiliH, 7/}%'
javallangiString //]__
e b anann o/ NOC antrollerfNenwOrde D ata [~
0 40000000 0000000 120000000 160000000 200000000
Biytes

Fage: 1of14 D H O

JVYM Heap Usage

Mumber | Server Instance MNumber
of Ohjects Weme Class Mame Process D of Bytes
40876 OMESRYA weberwwnoMOCantrollerfNewOrderData A0659525 | 168245616
166586 OMESRYA javallangiString A0659525 | 3146696
83702 OMESRWA javaiutillHashtable §Entry A0659525 | 2523744
10534 OMESRWA javailangiClass 406595245 | 2334056
7914 OMESRYA comiibmiserdetiutiiHashtakbleEntry A0659525 | 2146248
57258 OMESRYA javaiutillHashWapEEntry A0659525 | 1275480

Figure 5-27 JVM Heap Usage workspace

5.4.3 Example 4 - Identify a CICS TS response time problem

188

There is a problem in CICS Transaction Server that is impacting WebSphere.

In this example:

'S

We receive an alert on the ebusiness navigator tree that the average
response time for some workloads has exceeded the predetermined
threshold.

We also receive an alert on the ebusiness navigator tree indicating a problem
in CICS. We need to determine if the two issues are related.

Using the All Workloads workspace, we see that one workload has a long
response time, possibly calling the CICS Transaction Gateway (CICS TG).

We drill down to the Selected Workload Delays workspace and confirm that
the delay is due to a CICS TG request.

Using OMEGAMON XE for CICSplex, we see that a particular transaction
class has met its limit, causing CICS tasks for transaction CSMI to wait for first
dispatch. This confirms that workloads on WebSphere using CICS TG are
being impacted by CICS.

Monitoring WebSphere Application Performance on z/OS

Procedure

1. We receive an alert on the ebusiness navigator tree. Position the mouse
pointer over the alert (red triangle icon) to show details. Figure 5-28 shows
that the EIS application has two critical alerts:

a. Alert WAS Workload AvgResp Critical for server instance OMTSRVA
indicates that one or more workloads have exceeded the threshold for
average response time.

b. Alert CICSplex_ClassMax_Ciritical for CICS region SCSCERW1 indicates that
a CICS transaction class has exceeded its limit.

We first focus on the response time alert for WebSphere to see if it is related
to the CICS alert.

CandleNet Portal " ICandle

File Edit “iew Help

BErBEmIT S B9uWUidad @EHI"ES
@@ |ehusiness =
r

Trade2
Irventary Control

4 CRITICAL
@ | CIC3plex ClassMax Critical SC48 . SCICERWL 11/26/02 03:02:50
@ | WAZ Workload AvgResp Critical OMTSREVA:ZC48:KWWT 11/26/02 02:45:52

|Se|ectw0rkspace link buttan to view event results.

Figure 5-28 Two alerts on the ebusiness navigator tree

2. Click the link button for WAS_Workload_AvgResp_Critical in the critical alert
window to display the Current Situation Values table. Figure 5-29 displays one
servlet and an EJB Method that have exceeded the response time threshold.
For example, the servlet has an average response of over 5 seconds (5658
ms).

I]' AuBrage Sermer |In] wWorkload
Tirme MHame 3T Type

OMTSRVA Serviet _JIMESResults_jsp_3 _jspService
COMTSRWVA EJB Method | ervwcics.clg.pe. ERVWWCTGPCBean | priceChangeEJBdriver

Class Mame method Mame

Figure 5-29 Current situation values

Chapter 5. PathWAI solutions for WebSphere 189

3.

Clicking the link button for WAS_Workload_AvgResp_Critical in Figure 5-27 on
page 188 also expands the navigator tree to display the A1l Workloads
selection for server instance OMTSRVA.

Select the A1l Workloads workspace for server instance OMTSRVA.

CandleNet Portal™
File Edit View Help

Wusiness at the speed of light

ReBnaa S

T BSUdad 3B TE®

| =8 E1s
| =M Infrastructure
=&, TPMonitor
- WehSphere
=48 ApplicationServers

=By OMTSRYE,

- B Application §
Bl Application §
Bl Application §

@& €} [ebusiness -]

Bl JZEE Server Containers

mB x mB 0O =x
ﬁ_ Ten Worst Average Response Times
[JEJB Home Delay Time
erveweics.cty po EJSStatelessERVWACTGPCHomeBean EEJE Method Delay Time
erver Instance :;) |OEJe Remote Delay Time
erver Qverview |EuMS Delay Time
erver Instance £ |OuNDI Delay Time

com.ibm.zervlet.engine webapp. SimpleFileServiet

|OUTA Delay Time

- By J2EE Server Beans ; | Ohtiscen Delay Time
By ?EE Server Bean Methods | M Netmok Sodket Delay Time |
[l T Al Worklnads erwweics oty po ERAACTGRCEs |EsaL cennection Delay Time|
- Bk Longest Running Workloads ;.SQL Query Delay Time
Bt Datasources = : |EsoL Update Delay Time
Bkt HTTP Sessions | | @ seniet Delay Time
By JMS Summary | _JMSResults_jsp_3 |Huserdefined Delay Time
I Bly Jvh Threads =
| | 3 0 1000 2000 2000 4000 5000 000
MI Millise conds
mem@E x
All Workloads - Current Interval
Workload Murnber of Average | EJB Method | EJB Method User-defined Uset-defined
T
Type Class Name Method Mame Qccurrences Time Celay Time | Delay Percent Delay Time Celay Percent
2| Sarviet _JMSResults_jsp_3 _ispService 457 5658 5535 97.8 20 0.3
2| EJB hethod | erwwcics.olg. pe. ERVWWCTGPCBean priceChangeElBdriver | 467 5535 0 0.0 5408 a7y
=| Servet corm.ibm.servietengine wehapp.Sim... | doGet 543 28 0 0.0 0 0.0
22| EJB Method | erwawcics.ctg pe EJSStatelessERWAY. create 469 1] 1] 0.0 1] 0.0

Figure 5-30 All Workload workspaces

The bar chart view in Figure 5-30 shows two workloads with average
response times of over 5 seconds (5000 ms). Workload _JMSResults_jsp_3
has the longest response time but it is spending most of its time waiting for
EJB Method calls (blue on the bar chart), so it cannot help us determine the
cause of the delay. Workload erwwcics.ctg.pc.ERWNCTGPCBean is spending
almost 5.5 seconds on a user-defined wait (aqua on the bar chart).

This workload contains ctg in its name, so we suspect that this class is
related to CICS TG calls. Also, in the current PathWAI release, method calls
for CICS TG are instrumented as user-defined delays. We need to drill down
to see the actual delays to determine if this workload is really waiting for CICS
TG requests.

Note: In a future PathWAI release CICS delays will be displayed as a
separate wait category in the All Workloads bar chart view.

190 Monitoring WebSphere Application Performance on z/OS

4. Right-click the bar for erwwcics.ctg.pc.ERWWCTGPCBean in Figure 5-30 on
page 190 and navigate to the Selected Workload Delays workspace.

File Edit View

CandleNet Portal™

Help

[Musiness at the speed of ligh

HEemmaams S B9uidalaEZerEd

_EII’WWCiCS ot e ERVWWWCTGPCBean
4

cDm.\bm.ctu.cIient.LocIa\JavaGatewav

@ 3 [ebusiness - me x |B8 =R =]
-4 EIS 4 .
& Infrastructure Selected Workload Delay Average Response Times
-, TPMonitor
B Wieh3phere
Eﬁ', ApplicationServers
= Mg OMTSRYA
Application Server Instance
B}y Application Server Ouerview
By Application Server Instance £
B}y JZEE Server Containers
‘Bl JZEE Server Beans g
‘Bly JZEE Server Bean Methods _|
L)| orklo ads [
B}y Longest Running Workioads
Bl Datasources heforeirternalExecution
By HTTP Sessions =
1 INTVT . :
4] S _’d] 1000 2000 3000 4000 5000
< ebusinessl Millizeconds
mBe o
Selected Workload Delays - Current Interval
Dela Dela Delz Average Iax
‘ s (M Weiioes) e Typey MajUrN;me Mil’]UrNng = Timg Time J
2| erwwcics ctg.po ERVAWCTGPCBean | priceChangeEJBdriver || Method Call | com.ibm.cty.server SererECIRequest | executeEC] 41576 53983
22| erwwcics.cty.pe. ERYWYCTGPCBean | priceChangeEJBdriver [Method Call | erwwiCics cig pe PriceChangeComma. | befarelniernalExecution 37 40
=| erwwrics.cio.pe. ERVWWCTGPCBean | priceChangeEJBdriver | Method Call | com.ibm.cty.server. ServerECIRequest | setContentsty2 0.8 22
2| erwweics cig.pe. ERVWWCTGPCBean | priceChangeEJBdriver | Method Call | erwweics.clg pe.PriceChangeComma... | afterinternalExecution 0.5 2
@) erpwcics ctg.po ERVWCTGPCBean | priceChangeEJBdriver | Method Call | com.ibm.ctg.client ECIReguest setContentsFramPartner | 0.4 93
== erwweics oty pe ERVWYCTGPCBean | priceChangeEJBdriver | Method Call | com.ibm.cty.client LocalWorker execUte 03 16
= nriceChanaeEJBdriver | Method Call o 03 13

ClassName:erwwcics.cty.pc. ERWWCTGPCEean MethodName:priceChangeEJBdriver

|=

Figure 5-31 Selected Workload Delays workspace

Figure 5-31 shows detailed delay information for class:
erwwcics.ctg.pc.ERWWCTGPCBean, method: priceChangeEJBdriver.

We sort the table view in descending order by Average Time to find the
longest delay for method priceChangeEJBdriver. The largest delay is method
call ExecutekECI for class com.ibm.ctg.server.ServerECIRequest. This is the
IBM-provided class for CICS TG requests. This request has an average
response time of over 4 seconds (4,157.6 ms).

It appears that WebSphere workloads are being delayed due to CICS. We

use OMEGAMON XE for CICSplex to investigate the critical alert for CICS.
Click the link button for alert CICSplex_ClassMax_Critical in Figure 5-28 on

page 189 to display the Current Situation Values table for this alert.

Chapter 5. PathWAI solutions for WebSphere

191

FPercent of System CIZE Region Class Class Times Current
i
Limit

il Lydle D Narme Narme Lirit | atLimit | Tasks

SC48.8CSCERWY | BCAR SCECERYT CEMICLAS 1 1 12

Figure 5-32 CICS Current situation values

Figure 5-32 shows that CICS transaction class CSMICLAS is at 1200% of its
class limit. Clicking the link button for CICSplex_ClassMax_Critical in

Figure 5-28 on page 189 also expands the navigator tree to display the Task
Class Analysis selection for CICS region SCSCERW1.

6. Selectthe Task Class Analysis workspace for CICS region SCSCERW1.

CandleNet Portal " Wusiness At the speed of ighl]

File Edit View Help

ReBERan S BQuUida 8@ @@

@ & [enusiness | MBI R
= e [Task Class Distribution

M) Infrastructure
=] 1;”, TPMonitor
=B 5C48.5CSCERW
- Bk Connections Analysis
B¢ DBZ Summary
Bly DB2 Task Activity
- Bk DBCTL Summary USERCLAS
- By Dump Analysis
- By Engueue Analysis [|
Bhs File Control Analysis |
B Intarcommunication Summary
- Bk Internet Status
- By Journal Analysis
- B LR Pool Status
Bl Message Queding Analysis
- Bk Region Cverview
- By Service Level Analysis
--[Ehg Shared TS Queues
By Storage Analysis

|OPercent of Limit|

BWEY SSE|

CEMICLAS

;I a 200 400 G600 200 1000 1200

: Percent
45 ehusiness I

Task Class Analysis

System | CICS Region Class Class Tirmes Current Peak B Nurnber ik Percent of
D Narme MName Lirmnit at Limit Tasks Tasks Queued Limit
5C48 SCSCERWT || CSMICLAS 1 12 13 11

1
SCas SCSCERW TUSERCLA 4 1] 1] 50
SCas SCSCERWA | DFHCOMCL 10 0 0 0 0 0
SC4s SCSCERW! | DFHEDFTC 10 0 0 0 1 0
5C48 SCSCERW! | DFHTCIND 10 0 0 1 1 1

Figure 5-33 Task Class Analysis workspace

The table view in Figure 5-33 confirms that transaction class CSMICLAS has a
limit of one task and there are currently 11 tasks queued.

CSMl tasks processing CICS TG requests are queued waiting for first
dispatch, resulting in response time delays in WebSphere.

192 Monitoring WebSphere Application Performance on z/OS

Example 4 - Advanced procedure

An alternative to the previous procedure is to use the custom business view
for the PRR application; refer to “Customized business view” on page 172.
With this approach we can proactively monitor all the key components of the
PRR application from one workspace.

CandieNet Portal™
File Edit Yiew Help

Wusiness at the speed of light

EeBRId St BoWEal BB TED

@ @levusiness =] m B x EESE i me O
ﬁ”e'bu's'i'n'ééé' R CICS Transaction Analysis WebSphere MQ Queues
Trade2 Transaction Wait Elapsed
% rvertary Cantrol D i} Tyne i - Current Depth Clueue Mame Total Opens | % Full | Geff
El- CEMI TaskLims noonon.o0| oo s 0| MITEST.QUEUE 1] 0.0|Ena
Infrastructure [=]1]] TaskLims 00:00:00.00 | 00 0| JMS.INITE 3 0.0 Ena
% TPMonitar CEM TaskLims 00:00:00.00 QQJ 2| BYSTEM.CLUSTER. REPOSITORY.GL.. Z 0.0 Ena
BBy WebSphere [o2=] 111 TaskLims 00:00:00.00 | 00
4 | 5 4 | |
{11 o e mBe [x
JMS Summary MQ Listener USS Processes
i , Jotal Parent Process (D | ASID .Cummand Name | Jobname | 5 UNERun Time%
Time BT895573 | 03ef|java TMELIZTS 0.0
fqueleiME4BIMSTEST. QUEUE 400 :l 1| oo04n|sh JMSLIST 0.00
quELEMO4EICS0 BROB4FET CCFES | 474 =] 34341072 0078 |sh IMSLISTZ 000
gqueueiih4B/C50. BEIE4FAFCI090 953
2 ayeueifhQ4B/CS0 BEIE4FAFCIFFD 1198 .
w5a ebusmessl F] » l | i
{0 = b 0 B 4

WebSphere Application Server - Workload Analysis

Mumber of Rate of Total Average Max JmS Userdefined
Llans Hame Metod hiame Occurrences | Occurrence | Time g Timg Time | Delay Percent | Delay Percent
_JMSResults_isp_3 _IspSenice 102 0.284 TH4263 2T 1.8
erwweics. oy pe ERWWCTGPCERaN priceChangeEJBdriver | 92 0.256 464368 0.0 949.5
com.ibm.servetengine webapp.SimpleFileServiet doGet 196 0.545 40071 2548 14930 0.0 0.0
enwweics. oty pe EJSStateles sERWWC TGP CHomeBean | create 92 0.256 26 | 1} | B 0.0 0.0

Figure 5-34 Custom business view

Figure 5-34 shows the custom business view that we configured for
application PRR. It uses OMEGAMON DE to integrate the following
information into a single workspace:

— The CICS Transaction Analysis view displays task information for CICS
region SCSCERW1. This region processes the CICS TG requests for
application EIS. Product-provided situations automatically raise an alert for
CICS task-related issues.

— The WebSphere Application Server - Workload Analysis view displays
average response times for workloads on server instance OMTSRVA. We
configured this view to alert us when the average response time for a
workload is greater than 3 seconds.

The custom view also includes WebSphere MQ Queues, JMS Summary, and MQ

Listener USS Processes views that are not pertinent to this example. These

views are used by another business function within the PRR application; refer
to “Example 7 - Advanced procedure” on page 205 for more details.

Chapter 5. PathWAI solutions for WebSphere 193

Looking more closely at the CICS Transaction Analysis view from
Figure 5-34 on page 193, we see several CSMI transactions that are waiting
due to a CICS transaction class limit:

Tranzactian I]- WWait Elapsed
D Type Tirme
CEmI d Q0:00:00.00
CEmI d Q0:00:00.00
CEmI d Q0:00:00.00
CEhl 5 Q0:00:00.00

Figure 5-35 CICS Transaction Analysis view

From the WebSphere Application Server - Workload Analysis view in
Figure 5-34 on page 193, we see that application EIS has two workloads that
are experiencing average response times of over 5 seconds (7394 ms):

Murmber of Rate of Total Ruerage
Elees Mems iZinee i Occurrences | Occurrence Time i Timngl
_IMSResults_jsp_3 _jspSemice 102 0.284 Ta4263 !
erwweics. cig po. ERVWWWC TGP CBean pricechangeEJBdriver | 92 0.256 464368 1
cam.ibm.servlet.engine webhapp. SimpleFileServlet doGet 186 0.545 0071 2585
enmnivcics. cig.pe.EJSStatelessERVWYC TGP CHomeBean | create 92 0.256 26 |D

Figure 5-36 WebSphere Application Server - Workload Analysis view

In one workspace, the custom business view for application PRR shows long
response times for server instance OMTSRVA and issues with CICS CSMI
transactions that process CICS TG requests for this application.

5.4.4 Example 6 - Isolate a DB2 problem

Users complain that some of their business functions are very slow while other
functions work well.

In this example:

» We receive an alert on the navigator tree that average response times for
some workloads have exceeded the predetermined threshold.

» Using the All Workloads workspace we see that some methods are
experiencing delays for SQL queries.

» We drill down to the Selected Workload Delays workspace to view the
individual SQL delays for the poorly responding methods.

» We see that one specific SELECT statement has an excessive response time.
We deduce that the problem is in DB2.

194 Monitoring WebSphere Application Performance on z/OS

» We use OMEGAMON XE for DB2 to determine the cause of the delay in DB2.

» We select the Detailed Thread Exception workspace to see the DB2 threads
used by our application server. We see that our application server is
accessing a specific plan with high read 1/O rates.

» We select the Volume Activity workspace to review physical I/O rates for the
volumes used by DB2. We determine that DB2 is performing physical /O
rather than reading from the buffer pool. It appears that a specific SELECT
statement from WebSphere is causing excessive physical I/O reads by DB2.

Procedure

1. We receive an alert on the ebusiness navigator tree. Position the mouse
pointer over the alert (red triangle icon) to show details. Figure 5-37 shows
that the Inventory Control application has a critical alert for server instance
OMESRVB. The alert WAS_Workload_AvgResp_Critical indicates that one or
more workloads have exceeded the threshold for average response time.

CandleNet Portal " ICandle
File Edit “iew Help

REBLIT 582 BQUNa IR T B

& r@hhusiness =l

4 G
| Tradez2

ﬂ Inventary Cantral
-8 DataServer
G- WehSphere
=45, AppServer

: ? OMESRYA

& CRITICAL

@I WAS Workload AvgResp Critical OMESRVE:3CS0:EWWT 11/24/0Z 23:03:39

|Selectworkspace link button to wiew event results.

Figure 5-37 Alert WAS_Workload_AvgResp_Critical on the ebusiness navigator tree

2. Click the link button for WAS_Workload_AvgResp_Critical in the critical alert
window to display the Current Situation Values table.

Chapter 5. PathWAI solutions for WebSphere 195

IT‘r Average Server Workload

Mg Type Class Mame Method Mame
328630 COMESREYE | Serviet _0OS8Results_jsp_0 _ispSemice
3214116 OMESREYE | EJB Method | orderStatusSessionPackage . OrderStatusSessionBean orderStatusSessian

OMESREYE | EJB Method | orderStatusSessionPackage . OrderStatusSessionBean getCustomerinstance

OMESREYE | EJB Method | custormerEntityPackage EJSBMP CustomerEntityHomeBean | findByPrimaryley

158226 OMESRYE | EJB Method | customerEntityPackage CustomerEntityBean ejbFindByPrimardey

Figure 5-38 Current situation values

Figure 5-38 displays one servlet and four EJB Methods that have exceeded
the response time threshold. For example, the servlet has an average
response of over 320 seconds (328630 ms).

Clicking the link button in Figure 5-37 also expands the navigator tree to
display the A11 Workloads selection for instance OMESRVB.

3. Selectthe A1l Workloads workspace lor instance OMESRVB.

CandleMNet Portal " Wusiness at the speed of ight]

File Edit View Help

@& @lebusiness -I mE x | oEO

Ten Worst Average Response Times
‘WehSphere

—— -
¥, DataServer
o3

=4 AppServer [JEJB Home Delay Time
OMESRWA getOrderlineinstance EEJB Method Delay Time
=] OMESRYE SibFindBy CldAndDidAnchld .E.JB Remots Delay Time
Application Server Instance findByCldAndDId AnciATd Dj:‘ﬂ; DDelIav ':_me
Application Sener Overview elay Time
icati c L= ClUTA Delay Time
By Application Server Instance £ i ’ s S
Bk JZEE Server Containers AR i iseellaneous Delay \.me
Bly J2EE Servat Beans gjbFindByPrimarykey | [Irn Secket Delay Tims
Server Bean Methods finclByPrimarykey :SDL Connection De.\ay Time
o nans getCustomerinstance .22:: 5”:"!: D;"’I\‘ T'T"“e
b pdate Delay Time
Bl Longest Running Warkloads S e =t
Datagources] i —
: e e Ciserdefined Delay Time
4 | 0 100000 200000 300000 400000
4% ebusiness Milliseconds

me0
All Workloads - Current Interval
Warkload Mumber of | Average Max MNumber SQL S0OL Que
Type Class Name Method Name Qccurrences Timg Time Query Delays i DelayTimrz

am| EJB Method | customerEntityPackage. CustomerEntityBean ejbFindByPrimaniey 1 158326 | 158226 |1 155683
=8| EJB Method | customerEntityPackage EJSBMPCustormerEntityHarmeBean | findByPrimarndiey 1 312895 312985 |1 154111
22| EJB Method | orderEntityPackage.OrdetEntityBean ejbFindByCldAndDIdAndWId |1 369 369 1 17
| EJB hethod | orderEntityPackage. EJSBMPOrderEntityHomeBean findByPrimarykey 1 19 18 1 2
@) EJB Method | itemEntityP ackage. EJSBMP termEntityHormeBean findByPrimaniey 20518 g 62160 20518 Fl
=) EJB Method | itemEntityPackage ermEntityBean ejbFindByPrimarykey 20518 4 33051 20518 1
23| EJB Method | customerEntityPackage. CustomerEntityBean getCustomerBalance 1 0 1] 1]]
= EJB Method | customerEntityPackage. CustomerEntityBean getCustomerLast 2 0 1] 1] 0
zm| EJB Method | customerEntityPackage. CustomerEntityBean getCustomerhliddle 1 2 2 1] 0
=8| EJB Method | customerEntityPackage CustormerEntityBean dropConnection 1 5 5 1] 1]

Figure 5-39 All Workloads

The bar chart view in Figure 5-39 shows four workloads with average
response times of over 300 seconds (300000 ms). Method

196 Monitoring WebSphere Application Performance on z/OS

ejbFindByPrimaryKey has an average response of about 150 seconds. All
other workloads have sub-second response times.

We use the bar chart legend to analyze what these workloads are doing:

— Three workloads are spending about 300 seconds waiting for other EJB
methods (blue on the bar chart).

— Two workloads are spending about 150 seconds waiting for SQL queries
(purple on the bar chart).

We assume that the SQL queries are the bottleneck, causing the other
workloads to wait.

4. Looking more closely at the table view on the All Workloads workspace from
Figure 5-39 on page 196, we sort the table in descending order by SQL Query
Delay Time in order to identify poorly performing SQL queries.

Mumberof | Average [LETS Mumber AL SEL Que
Method Name Qccurrences Timeg Time Guery Delays v DelayTimnn;
ejbFindByPrimanykey 1 188226 [158226 |1 155683
findByPrimarykey 1 312995 | 3129485 |1 154111
ejbFindByCldandDlidandWid |1 3649 368 1 17
findByFrimarykey 1 19 19 1 2
findByP rimanykey 20518 8 62160 205818 2
ejbFindByFrimanyley 20518 4 330481 20518 1

Figure 5-40 All Workloads sorted by SQL Query Delay Time

Figure 5-40 shows that method ejbFindBbyPrimaryKey has the highest SQL
Query Delay Time (155683 ms). We want to know if the long response time
for ejpfindbyprimarykey is due to many short SQL queries, or perhaps one
long query.

5. Click the link button on the table row for ejbFindbyPrimaryKey to display the
Selected Workload Delays workspace. Figure 5-41 on page 198 shows
detailed delay information for method ejbFindByPrimaryKey.

Chapter 5. PathWAI solutions for WebSphere 197

CandleNet Portal ™" Wusiness i the speed of ight

File Edit “iew Help
HEBERiF S22 Buidal 32T B@
@& €2 [ebusiness - =} X| ma | x

Selected Workload Delay Average Response Times

Method Call Q
EJB Mathad Call //‘I
SOL Query. 2

Register Transaction Sync Object: /

=2 DataServer
Eﬂ WehSphere
-4} AnpServer
OMESRVA
OMESRVE
e Application Server Instance
L Application Server Cwerview
Bl Application Server Instance &
by J2EE Server Containers
)}y J2EE Server Beans
L JZEE Server Bean Methods
AllViorkloads
e Longest Running Workloads
Datasources = Unknown |

Frepare SOL statement-/

EJB Method Call 1

EJB Method Call

5] I o 20000 40000 BO000 20000 100000 120000 140000 180000

L= ehusmessl Milliseconds

(0=) i 4
Selected Workload Delays - Current Interval
Delay Delay Delay Murnber of Total = Average [IEVS Delay
Type Major Name Minor Marne Oceurrences | Time Time Time | Percent
28]/ SQL Query java:complendjdb cARWWADE SELECT c_id, c_d_id, c_w_id FROM ... |1 166683 | 155,683.0 131188 |68.3
22| EJB Method Call customerEntityPackage CustomerEnt... | checkConnection 1 1719 1,719.0 17149 1.0
=2|| Method Call customerEntitPackage. CustomerEnt... | getProfilekey 1 518 518.0 418 0.3
28| Unknown 1 254 2540 254 0.1
25| Prepare B0L Staternent javacomplervidbclRMADE SELECT ¢_id, c_d_id, c_w_id FROM ... |1 47 47.0 47 0.0
22| EJB Method Call customerEntitvPackage CustomerEnt... | dropConnection 1] a.0 g 0.0
22| Register Transaction Sync Ohject 1 0 0.0 0 0.0
22|| EJB Method Call customerEntityPackage. CustomerEnt... | debugOut 1 1] 0.0 1] 0.0
Ell | i

ClassName:customerEntityPackage.CustomerEntityBean MethodName:ejbFindByPrimaryKey

Figure 5-41 Selected Workload Delays

Looking more closely at the table view on the Selected Workload Delays
workspace in Figure 5-41, we sort in descending order by Average Time to
find the longest delay for method ejbFindByPrimaryKey. Figure 5-42 shows
the largest delay to method ejbFindByPrimaryKey is a SELECT statement to
datasource IRWWDB, with an average response time of over 155 seconds
(15,683.0 ms).

Delay Delay Mumberof | Awverage P

Major Mame Minar Mame Qccurrences Time Time
jawazcormplerjdbel FYWWDE SELECT c_id, c_d_id, c_w_id FROM CBIVP custamer .. | 1 1556830 |7,093.871
customerEntityPackage. CustaomerEnt... | checkConnection 1 1,718.0 1,009.311

customerEntitvPackage. Customerent... | getProfilekey 1 1.0 134 464

Figure 5-42 Selected Workload Delays table view

It appears that we have a problem in DB2, but we can’t tell if DB2 is being
impacted by another application in the sysplex. Use OMEGAMON XE for DB2
to investigate the performance of DB2.

198 Monitoring WebSphere Application Performance on z/OS

6. From the ebusiness navigator tree, select the Detailed Thread Exception
workspace for Inventory Control’s datasharing group to see DB2 threads.

CandleNet Portal ™"
File Edit ‘“iew Help

EEBRiT S5e2 80uWbal @006
@ €f [ebusiness =l
& ebusiness
¥, Tradez
B Inventory Control
=B DataServer
-8} Database
¥, CF Structures
Elg Diata Sharing Group
DBR4B:5C48:DB2
=5 DB4C:5Ca0:DB2
- BEW Systern Status
[Detailed Thread Exception
- Bl Subsystem Management
LBl Log Manager
Bl Utilty Jobs
-Bly EDM Pool
- Bk Buffer Poal Management
- B Volume Activity
B CICS Connections
- By IMS Connhections

A Bl mnareoesasna

€8 ebusmessl

ImreBusiness at the speed of ligh

mEe O

Detailed Thread Exceptions

Prefetch
Rate

221

0.0

0.0

0.0

Flan
MNamme
DEMNJDBC
DSMJDBC
DENJDBC
DSMJDBC

Carrelation
Identifier
OMESRYE
OMESRYS
OMESREWS
OMESRYS

Conngction
Identifier
RREAF
RREAF
RREAF
RRSAF

Elapsed
Time
o0:0a:17
01:07:51
00:00:00
00:00:00

Read 0
Rate

6929

0.0

0.0

0.0

Resource Limit
Percent

0.0

0.0

0.0

0.0

Wait Time
Drain Claims
0.000
0.000
0.000
0.000

Wait Time
Drain Lock
0.000
0.000
0.000
0.000

Wiait Time

Global Lock
0.000
0.000
0.000
0.000

‘Wait Time
Log Gueue
0.000
0.000
0.000
0.000

DB2ID

DBaC
DB4AC
DB4AC
DB4C

o Wait Time
Procedure
0.000
0.000
0.000

0.000

kd
L
d

b

Figure 5-43 Detailed Thread Exceptions workspace

Looking more closely at the table view in Figure 5-43, we filter by Correlation
ID = OMESRVS to locate the DB2 threads used by our application server.

Flan Cnrrelgtinn Cu:unne_u:tinn DEZID Ela_paed Frefetch | -~ Read O
MHame |dentifier |dentifier Tirme Rate Rate
DSMJDBC | OMESRYS | RRSAF DB4c no:0ay 221 G929
DSMJDBC | OMESRYS | RRSAF CB4C 01:07:81 n.a 0.0

Figure 5-44 Detailed Thread Exceptions table view

7.

Figure 5-44 shows our application server (OMESRVS), using two DB2
threads for DB2ID=DB4C. We know that DB4C is on the same LPAR as
server instance OMESRVB. We see that one of the threads for DB2 plan
DSNJDBC has a high Read I/0 Rate (692.9). We want to understand if DB2
is reading from the buffer pool or performing physical I/O.

Select Volume Activity from the ebusiness navigator tree to view physical /0

rates by volume. Refer to Figure 5-43 on page 199 to access Volume Activity.

Chapter 5. PathWAI solutions for WebSphere

199

volume e Setvice Total De2 Tatal O DB2 JO
Name | Ciization | Cmest b o o |0 Rie | T Rie
TOTOBR 0 70 16 0 0.4 0.0
ERWOOE 765 00| 12538| 12538
ERWOT7 39 0G| 5006|5089
ERWOT 1 i 0.0 i i

Figure 5-45 Volume Activity table view

Figure 5-45 shows an extract from the table view of the Volume Activity
workspace. We see that DB2 is causing high physical I/O rates to volumes
ERWOOB and ERWO17. The I/O rates for both volumes have exceeded the
product-provided thresholds.

It appears that DB2 is not able to process the high rate of read requests from
the buffer pool. Note that Total 1/0 is the same as DB2 I1/0. This means that
no other workload is causing contention on these volumes. We deduce that a
specific SELECT statement from method ejbFindByPrimaryKey is causing
DB2 to perform excessive physical I/0 reads.

If OMEGAMON XE for DB2plex were installed, there would be a link button for
each row on the Volume Activity table view. The link navigates to a workspace
that shows which databases are using that volume. We could then drill down
from the databases to identify which tablespaces are using that volume. This
would show us which DB2 tables are causing our problem.

At this point we need to turn the problem over to the DB2 administator.to
diagnose the problem. The DB2 administrator could use OMEGAMON Il for
DB2 to start an application trace to determine whether a tablespace scan was
occurring. We suspect that this database needs an index to eliminate the
tablespace scan.

5.4.5 Example 7 - Transaction hang or time-out

Users complain that one of their business functions is timing out. In this example:

» We receive an alert on the navigator tree that average response times for
some workloads have exceeded the predetermined threshold.

» Using the All Workloads workspace we see that one method is experiencing
delays for JMS requests.

» We drill down to the Selected Workload Delays workspace and see that this
method is consistently taking 180 seconds for JMS Message Get requests.
We suspect a JMS timeout.

» We select the JMS Summary workspace to determine whether all JMS
requests are experiencing delays or just the Message Get requests for this

200 Monitoring WebSphere Application Performance on z/OS

workload. We see that Put requests to the same queue manager are being
processed normally.

» We deduce that the method is putting a message on one queue and timing
out waiting for the response on the reply-to queue.

» We use OMEGAMON XE for WebSphere MQ to investigate the problem with
the MQ queues. We select the Queue Statistics workspace and see that the
trigger queue is not being processed because it is Get disabled.

Procedure

1. We receive an alert on the ebusiness navigator tree. Position the mouse
pointer over the alert (red triangle icon) to show details. Figure 5-46 shows
that the EIS application has a critical alert for server instance OMTSRVA. The
alert WAS_Workload_AvgResp_Critical indicates that one or more workloads
have exceeded the threshold for average response time.

CandleNet Portal " ICandle

File Edit View Help

BEERAT S BQuWEEad 3BRITES
@ &} |ebusiness =l

Tradel
i 2 Inventory Control
éE----ﬂ EIS

B8 Infrastructure
ﬁ TPManitar

4 CRITICAL
@| WAS Workload AvgResp Critical OMTSRVA:SC48:KWWI 11/26/0Z 04:50:46

|Se|ect wiorkspace link buttan to view event results.

Figure 5-46 Alert on the ebusiness navigator tree

2. Click the link button for WAS_Workload_AvgResp_Critical in the critical alert
window to display the Current Situation Values table.

Average Server Workload Mumhber of JmS JMS
IT Time Mame Type Class Name Method Name Occurrences | Delay Time | Delay Percent
181663 OMTERWA | Serviet _JIMEResults_jsp_3 | _jspSemice 18 181142 95,7

Figure 5-47 Current situation values

Chapter 5. PathWAI solutions for WebSphere 201

3.

Figure 5-47 on page 201 displays one servlet that has exceeded the
response time threshold. This servlet has an average response of over 181
seconds (181663 ms), with the majority of its time spent waiting for JMS
(99.7%).

Clicking the link button in Figure 5-37 on page 195 also expands the navigator
tree to display the A11 Workloads selection for instance OMTSRVA.

Select the A1l Workloads workspace for instance OMTSRVA.

CandleNet Portal "
File Edit “iew Help

m«»ﬂusiness at the speed of light

FeERimn S BQuidad EED @@

@ <2 [ebusiness -]

i ==

=-fg €15

M) Infrastructure

Ten Worst Average Response Times

lg TPMonitar LIEJE Home Delay Time
Eﬁ WehSphere EEJp Method Delay Time
=] ﬂ, ApplicationSerers [OEJB Remote Delay Time
=By OMTSRYA bl D3 Delay Time
By Application Server Instance Ounpl pelay Time
Bl Application Server Cverview OutA Delay Time
- By Application Server Instance £ Omiscel Delay Time
-[Ehy J2EE Server Containers W Hetuotk Sodket Delay Time
By JZEE Server Beans EsoL connection Delay Time
+-Bhy J2EE Server Bean hiethods T B 5oL Quer Delay Time
R 1] A nads SIepctice B S0l Update Delay Time
-[Ey LOngest Running Workloads W scniet Delay Time
Datasource? % Ouserdefined Delay Time
4 L o 40000 30000 120000 160000 200000
e ebusmessl Milliszconds
m B iE x
All Workloads - Current Interval
Warkload Mumber of Average & Mumber JMS JMS Average
Type Class Name Method Name QccUrrences M Timg Tirne JMS Delays | Delay Time | Delay Percent CPU Tﬁ'ne
2| Servlet _JMSResulls_jsp_3 _jspService 18 181663 1859596 3] 181152 89,7 168,413
22| Serviet com.ibm.sewletengine wehapp SimpleFile . | doGet 21 20 102 1] 1] 0.0 21580

Figure 5-48 All Workloads workspace

The bar chart view from Figure 5-48 confirms that one workload has an
average response time of over 180 seconds. All other workloads have
sub-second response times. We use the bar chart legend to confirm that this
workload is waiting for JMS requests (green on the bar chart).

Looking more closely at the table view on the All Workloads workspace from
Figure 5-48, we sort the table in descending order by Average time.

Mumhber of AvBrage LETS Mumhber JmS JmS
iEliog Eme Jccurrences - Tirme Time JMS Delays | Delay Time | Delay Percent
_jspSerice 18 181663 185996 GE 181142 9a.7
doGet 21 20 102 a a 0.0

Figure 5-49 All Workloads table view

202

Figure 5-49 shows that there were 18 occurrences of method _jspService in

the collection interval with an average response time of 181663 ms. We note

Monitoring WebSphere Application Performance on z/OS

that the maximum response time was 185996 ms. This means that every
occurrence of this workload had a response time close to 180 seconds.

We drill down to understand which JMS requests are causing this 180 second

delay.

5. Click the link button on the All Workloads table row for method _jspService to

display the Selected Workload Delays workspace:

CandleNet Portal ™" Wusiness at the speed of light
File Edit Wiew Help
BB LR S5 auwidadaB@eoEe
& &2 [ebusiness ~| meE x mEO x
&8 Infrastruct A
lg nirasiruciure Selected Workload Delay Average Response Times
2% TPMonitor
B iﬂ WiebSphere
=i ApplicationServers oueue: MQBICSQ BEIESICETB2631 02 A
=-B OMTERVA =
B Application Sewe”nmance gueleMR4BICEQ BEIES4EECDEZAN00 W/_
Bl Application Server Ovaneur IMQBICSQ BEIRSIEBADBITDOZ W/
- [Bly Application Server Instance £ Aok > L
[l J2ZEE Server Containers i i i i i i i
By J2EE Server Beans gueLe MO4RICSE BEBESICETST 1 9AB3 RS,
cueus IME4BICSE BASESICETST 483 %’_
queue: MAIBICSQ B39BS3FECEaETDR
dueueMIIBAMSTEST QUELE =
By Datasourtes cueUE:MQ4BICS R BEIBS4ED07F 79485 %_
.Y} HTTF Sessions T
B} IMS Sumrmary _ oueuE IMOABICSD BSQBSSBFAESE?%
—t rl SETUR
'I I L2 o 20000 40000 60000 20000 100000 120000 140000 160000 180000 200000
@ ehusiness Milliseconds
EA mEO
Selected Workload Delays - Current Interval
‘\Workload Delay Delay Delay Average LER
Tyne R Ml et Type Major Name Minor Name Y Time || Time
=] Serviet _JMSResults_jsp_3 | _jspSerice || JMS Message Get | MQ4B queuelMO4BICSQ.BE9653CET 6104347 180,238.0 [[180238 =
23] Servlet _JMSResults_jsp_3 | _jspSenice JME Message Get MC4B queueiMO4B/CE0 BEIE53FRCERETD 2T 180,234.0 180234
==2| Serviet _JIMEResUlts_jsp_3 | _ispBenice JME Message Get Mea4B fqueleliMe4BICE Q. BEIR53CETBOOFOGT 180,233.0 ||180233
2| Serviet _JMSResults_jsp_3 | _jspSenice || JMS Message Get | MQ4B queueMa4BICE0.BBIB5ICETB2E3102 180,232.0 |[180232
25| Serlet _IMSResults_jsp_3 | _jspSenice JMS Message Get M4B queuediMC4BICS0.BEIE53CT 1 BAGT C42 180,229.0 |[180229
=2 Serviet _JMSResults_jsp_3 | _jspSenice JME Message Get MC4B queussiMQ4B/CE0. BEIE546BA0B4TDO2 180,201.0 180201
= Sfrwet JMEResults isn 3 | isnSenice [JWE Messade Gel | MGAHE | GUEUe MO EICEE BEIE5 J68ARET (BED TEO.Z000 (180200 =
4 *
ClassName: JMSResults jsp 3 MethodName: jspService

Figure 5-50 Selected Workload Delays

The table view in Figure 5-50 shows that method _jspService is performing

JMS Message Get requests to queue manager MQ4B. The response time for
each JMS Message Get request is almost identical (for example 180238ms,

180234ms, and 180233ms).

It appears that this workload may be experiencing time-outs on JMS Message
Get requests after 180 seconds. We want to understand whether a/l JMS
requests are experiencing delays or just JMS Message Get requests for this
particular workload.

6. From the ebusiness navigator tree select the JMS Summary workspace.

Chapter 5. PathWAI solutions for WebSphere 203

CandleNet Portal™ lmﬂusiness at the speed of ligh
File Edit ‘“iew Help
HeBEnmi=n 5 aduad 32 -E6
[Iebusiness - {1 ‘ o= 0O
=8 ApplicationServers JMS Average Response Times
=g OMTSRVA
- B Application Server Instance e 1 1 1 L
Ble Application Setver Overview queue:MO4BIC 50 BEOB5ECETST 19453 /:
- Bk Application Server Instance £ queue/MR4B/C SR BE0BSICETE 104347 A
~Blg JIEE Sener Containers queve:MOABIT 52 BE9E53BF AD2IEE5E 7
-~ By JIEF Server Beans queuskD4B/CS 0.BE0E5A5 BADEF ARET - =
By JZEE Server Bean Methods o arsiagsioetiime
A} Al Workloads queus/MOABCS 0. BIIESIBFACODFEES L O average Put Time
Longest Running Warkloads quaue :rMoanJMSTEST.auEuEP/ I T T T Wt i
Datasources queue:MO4E/T S0 BR9G53CET B2E3102 /L
HTTF Sessions queue#MO4BIC S0, BI96546 BAABTTHED “ 4
[nmary ! i
4IMO4B/CS 0. BE9E5IBFFO350260
By JM Threads i S
queue:MO4BIT 50 BB0553C11BAST Cd2 o
4 | [40000 80000 120000 160000 200000
s ehusinessl Millisecands
T8
JMS Summary - Current Interval
Queue Manager e , Total Mumber of Average Mumber of Avarage Mumber of Average
Marme Tifme Gets Get Time Futs FutTime | Browse Gets | Browse Time
5| MO4B queue SMa4BIUMETEST QUEUE 221 0 0.000 23 9.608 0 0.000
=5| MQ4B fqueue MMO4BICS0.BREESICT 18032701 180001 1 180,001.000 0 0.000 1] 0.000
22| Mo4B fqueue MMG4RIC S0 BEYES3FE05A0TERD 180001 1 180,001.000 0 0.000 1] 0.000
=2 MQ4B fqueue MA4BICSQ.BEBESICETST13A83 180020 1 180,020.000 0 0.000 1} 0.000
5| MO4B queue SMO4BIC S0 BEBES46CCABDTEE2 180043 1 180,043.000 0 0.000 0 0.000
=5| MQ4B fqueue MMO4BICS0.BEOES46D0TFT 9485 180043 1 180,043.000 0 0.000 1] 0.000
= MO4B gqueue SMO4BIC S0 BEOES46BCDE3A000 180078 1 180,078.000 0 0.000 a 0.000
2| MQ4B fqueueSME4BICS0.BE0653BFFO350260 180182 1 180,182.000 0 0.000 1} 0.000
=2| MO4B fqueueMMA4BICS0. BEBE5IBFAD 235683 180187 1 180,197.000 0 0.000 0 0.000
= MQ4B fqueue MMO4BICS0. BEBESIBFAEIEGD2T 180198 1 180,198.000 0 0.000 1] 0.000
=| MO4B gqueue MMO4BICS0 BBOES4EBAART TEED 180200 1 180,200.000 i 0.000 1] 0.000

Figure 5-51 JMS Summary

Looking more closely at the table view in Figure 5-52 shows that there are 23
Put requests for queue name JMSTEST.QUEUE with an average response of
9.608 ms. These sub-second Put requests are being issued to the same
queue manager (MQ4B) as the 180-second Get requests. It appears that only
Get requests are experiencing delays.

Queue Manager Total Mumber of Average Mumber of Average
Narme e (e " Tirme Gets Get Time Puts PUt Time
4B gqueue fiMO4BIMETEST. QUELIE 221 0 0.ann 23 9608
Mo4B queue MQ4BICSQ BEEREICT 18032701 180001 1 180,001.000 0 0.ann
Mo4B queue fMQ4BC50 BESRSIFB05A01ERD 180001 1 180,001.000 0 0.ann

Figure 5-52 JMS Summary table view

We deduce that this workload is putting a message on queue JMSTEST.QUEUE,
then creating a reply-to queue and issuing a Get for the response. For some
reason the process that retrieves the message from JMSTEST.QUEUE and
returns the response on the reply queue is failing. We use OMEGAMON XE
for WebSphere MQ to investigate queue manager MQ4B.

204 Monitoring WebSphere Application Performance on z/OS

7. From the ebusiness navigator tree select the Queue Statistics workspace for
queue manager MQ4B.

CandieNet Portal "
File Edit View Help

Wusiness at the speed of ligh

FDEBERdD S22 a0uidad 3E8%TE6

@ ¢ [ebusiness ~|

- m-Hm OMTSRYE
n_E', WehSphereMQ
&

S mosB

Bl Application Debugning
By Application Statistics
By Buffer Pool Statistics

- [Ehy Channel Definitions

- Bl Channel Initiatar Status
By Channel Performance
By Cluster Queue Manager |
- By Dead-Letter Gueue Message |

| [LY M::m:nnrpnrfnrmlnnrn_l;‘
P Ol

T
il VAT Wethod Summan

Humber of Queues

16047

120

— 4

Queue Statistics Summary

| OMonitared Quauas
|Hapen Queues

LIk

[Humber Queues with High Depth|
| Humber of Queues et inhibited |
|CMumber of Queuss PutInhibitad |

Queue Utilization

Page:[1 0f4 @ B O

€5 ehusinesslaﬁé thsicall il r
Page:[2074 m 2 O
Queue Statistics
Page SetlD |/ @ueue Name CE;SS;:E” Gurrent Depth | GetStatus | PutStatus | Trigger Control | Trigger Tyne | Trigoer Depth | Trigger Priority | Storage
=[5A |04 JMSTEST QUEUE Ho 157 | Disabled |Enabled | ves Every 1 0| DEFAULT]

Figure 5-53 Queue Statistics

Looking more closely at the table view from Figure 5-53, we filter for queue
JMSTEST.QUEUE. Figure 5-54 shows that queue JMSTEST.QUEUE has a trigger
depth of 1, but a queue depth of 157. This is caused by the Get Status of

Disabled.
4 Queue MName CE;SE;C:U Current Depth | Get Status | Put Status | Trigger Control | Trigger Type | Trigger Depth
JMSTEST.QUEUE Mo 147 | Disabled Enabled Yes Every 1

Figure 5-54 Queue Statistics table view

In this example, the process that is supposed to retrieve the message from
queue JMSTEST.QUEUE is unable to get the message. This means that the

response is never put on the reply queue, resulting in a timeout for the Get
requests for the WebSphere application.

Example 7 - Advanced procedure
An alternative to the previous procedure is to use the custom business view

for the PRR application. With this approach we can proactively monitor all the
key components of the application from one workspace.

Chapter 5. PathWAI solutions for WebSphere

205

CandleNet Portal™ Wusiness at the speed of light
File Edit View Help
EeBRimn S BEQuial 8B red
@ @ [ebusiness] m B x me@ x omem x
8 obusiness CICS Transaction Analysis WebSphere MQ Queues
-4, Trade2 Transaction |, Wait Elapsed cPL]- |]
|rventory Cortrol i Type Titio T Current Depd Queue Mame otal Openyd % Full I Getstatus
E d? CCMT Terminal 00181717 | 0000 JMSTEST.QUEUE 0 0.0
Intrastructure 0| JMSINITQ 3| 0.0|Enabled
!H TPMaonitar 2[3YSTEM.CLUSTER REPOSITORY.Q... 2 0.0 Enahled
ﬁ WebSphere
4 | i3] K | 2
mBeEO x IESSE=EE o .
JMS Summary M@ Listener USS Processes
Gl E s i Jotal Parent Process D | ASID | Command Mame | Jobname | 5 UMK Run Time% :
Time 67885573 | 03ef | java IMSLISTS 0.01 | Multi
qUeueiMQ4BICE0.BEG658831 5EGE... | 180212 1T ooap | zh TMELIET 7.00] ona|
queusMQ4BICS0.BBEE5ACAEDSEE. . [180181 — 34341072 | o078 | sh IMSLISTZ 0.00 [one]
queueiMa4B/C50. BRYE591FI6712 180174
ayeueiMa4B/CS0 HRYASER330FED 180118 T
5a ebusinessl 4l el P]]
(U= B 1 R <
WebSphere Application Server - Workload Analysis
Murnber of Rate of Tatal Average [EYS JniS Uszer-defined Tatal
Pless Name Method Name | 5o umences | ocourrence | Tme | B° “Time | Time | DelayPercont | Delay Percent | oPUTIme
_JMSResults_isp_3 _ispSemice 24 0.066 4323048 360370 (999 0o 819.714
com.ibm.serdet engine wehapp Sim doGet 21 0.058 478 | 27 |13 0.0 0.0 42276

Figure 5-55 Custom business view

Figure 5-55 shows the custom business view that we configured for
application PRR. It uses OMEGAMON DE to integrate the following
information into a single workspace:

The WebSphere MQ Queues view displays information from queue manager
MQ4B on queue JMSTEST.QUEUE used by the PRR application. Based on
our previous analysis we know that the trigger depth is one message, so
we configured this view to alert us when the queue depth is greater than 3.
We also configured this view to alert us when the queue is Get disabled.
The JMS Summary view displays response time information for JMS
requests for server instance OMTSRVA.

The MQ Listener USS Processes view displays information on the USS
processes that get the messages from the MQSeries trigger queue and
return data on the reply-to queues for the PRR application.

The WebSphere Application Server - Workload Analysis view displays
average response times for workloads on server instance OMTSRVA. We
configured this view to alert us when the average response time for a
workload is greater than 3 seconds.

The custom view for application PRR also includes a CICS Transaction
Analysis view that is not pertinent to this example. This view is used by
another business function within the PRR application; refer to “Example 4 -
Advanced procedure” on page 193 for more details.

206

Monitoring WebSphere Application Performance on z/OS

Looking more closely at the WebSphere MQ Queues view in Figure 5-56, we see
two alerts for the MQ trigger queue (JMSTEST.QUEUE) used by application PRR.
The queue is Get disabled, resulting in a backlog of messages on the queue.

© Current Dep Clueue Mame “otal Openy % Full I Get status
JMESTEST.GUELUE 1] 0.0 QBRI
0] JMS.IMITC 3 0.0|Enabled

Figure 5-56 WebSphere MQ Queues view

The WebSphere Application Server - Workload Analysis view shown in
Figure 5-57 shows that application PRR has a workload that is experiencing
average response times of over 180 seconds (180127 ms).

Hurmber of Rate of Tatal Averane
Cleizie iz lilzitvoel izl Qccurrences | OcoUrrence Time IT‘_ Time
_JMEResults_jsp_3 _ispService 24 006R 4323048

Figure 5-57 WebSphere Application Server - Workload Analysis view

In one workspace, the custom business view for application PRR shows long
response times for server instance OMTSRVA and issues with the MQ trigger
queue used by this application.

5.4.6 Example 8 - Static pages serving

The purpose of this example is to detect when our WebSphere Application
Server on z/OS is serving static pages.

This example is not intended to imply that WebSphere for z/OS is not a viable
choice for serving static pages, but in our environment we expect the
WebSphere Edge Server to be handling the static content. Our objective is to
detect a configuration error or failover condition for our edge server.

WebSphere handles static pages using an IBM-supplied class:
com.ibm.servlet.engine.webapp.SimpleFileServlet, sowe define a warning
situation that detects when this class is executed.

In this example:

— We receive warning alerts on the ebusiness navigator tree from all three of
our server instances, indicating that they are serving static pages.

— Selecting the All Workloads workspace for one of our server instances,
we confirm that SimpleFileServlet is being executed many times.

Chapter 5. PathWAI solutions for WebSphere 207

— We want to understand the impact to WebSphere of serving these static
pages, so we review the amount of CPU used by SimpleFileServiet.

— We use OMEGAMON XE for OS/390 UNIX System Services to see if
there is any increase in HFS 1/O as a result of handling the static content.

— We use OMEGAMON XE for Mainframe Networks to review the load on
TCP/IP.
Procedure

1. We receive a warning alert on the ebusiness navigator tree. Position the
mouse pointer over the alert (yellow triangle icon) to show details.

CandleNet Portal iCandle
File Edit “iew Help

BEERAiIE S BQOUald @3ED TE@

@ |ebusiness =

<2

5 [WARNING

@ | WAS Static Content CMTSRVE:SCI0:KWWI 12710702 23:31:38

@ | WAS Static Content CMTSRVA:SC48:KWWT 12710702 23:38:37
@ | WAS Static Content CMTSRVC:SCSZ:KWWT 12710702 23:31:38

|Se|ectw0rkspace link button to view event results.

LE

Figure 5-58 Warning alerts on the ebusiness navigator

Figure 5-58 shows that the Trade2 application has three warning alerts

indicating that static pages are being handled by server instances OMTSRVA,
OMTSRVB, and OMTSRVC.

Since the alert is the same for all three instances, it doesn’t matter which alert
we select. We will analyze instance OMTSRVA.

2. Click the first link button for WAS_Static_Content in the warning alert window
to display the Current Situation Values table for instance OMTSRVA.

Server Workload Mumhber of AvBrage
[class Name Marme Type HiEtingel Heme Qccurrences Tirme
cam.ibm.serlet.engine webapp SimpleFileSerdet | CMTERYA | Serviet doGet 1423 27

Figure 5-59 Current situation values

208 Monitoring WebSphere Application Performance on z/OS

Figure 5-59 confirms that class name
com.ibm.servlet.engine.webapp.SimpleFileServlet has been invoked by
server instance OMTSRVA.

Clicking the link button in Figure 5-58 on page 208 also expands the navigator
tree to display the A11 Workloads selection for instance OMTSRVA.

3. Select the A11 Workloads workspace for instance OMTSRVA.

CandleNet Portal ™"
File Edit View Help

Wusihess al the speed of lighl]

HE RN E

Se s BQUEa S EE? TED

@ € [ehusiness |

ER ebusiness
=-Ef} Trade?
+- M8 Databaze
léf Infrastructure
=B WebSphere
=-Ef ApplicationServers

= OMTSRVA

o B

Bl Application Server Instance
Bl Application Server Ovarview
{8k Application Server Instance £
1B}y JZEE Server Cantainers
Bl JZEE Servet Beans

Bl JZEE Server Bean Methods

x|

Ten Worst Average Response Times

trade TradeBean/cresteHolding:
trade TradeBeanbuy-
_account_jsp_0/_jspService

..ebspp . SimpleFieServistidoGet
_portfolio_jsp_0/_jspService

..client. Trade AppServistidoPost

...PHoldingHomeBeanifindByU=erlD

..._client. TradeAppServistidoGet
trade TradeBesn/getHoldings:

[CJEJB Home Delay Time
EEJB Method Delay Time
OEeJB Remote Delay Time
EJims Delay Time

[N Delay Time

OuTA Delay Time

O Miscellaneous Delay Time
B Natrotk Socket Delay Time
EsaL connection Dalay Time
W S0 Query Delay Time

B SOL Update Delay Time
M serviet Delay Time

¢ Content trade. TradeBean/uetPortfolio ClUserdefingd Delay Time
| a 100 200 300 a00
48 ebusiness Milliseconds
m B8 0
All Workloads - Current Interval
Varkload Interval Murnber of Ayerage Total Ayerage
Type [class Name MetodbEm e | KTt Qccurtences | Tima CPUTIme | CPU Time
2| Servlet trade_client TradeAppServet doPost 300 1443 134 T4 685.035 52.449
| Servlet trade_client TradeAppServet doGet 300 a7 287 74994 637 131.109
22| EJH Method | trade EJSCMPHaldingHomeBean findByUserlD 300 a71 256 B4 923.065 113.700
== Serviet _hartfolio_jsp_0 _ispService 300 673 32 9,920.574 17.329
22| EJB Method | irade HoldingBean getOhiect 00 144954] 7530364 0051
@) Serlet \ com.ibm.servlet engine webapp.SimpleFileSeret | doGet 300 2677 23 5,623.748 2100 |
25| EJB Method trade-HotdingErean urrsetEntityComtexdt 3060 LAl i 4 FE AT AL ;

Figure 5-60 All Workloads workspace

We sort the table in descending order by Total CPU Time and locate the entry
for SimpleFileServilet.

Interval Mumber of Average Tatal Avarage
[class Name LD=inmd WEmE Time Ey Occurrences Timg CPU Time CPUTi%"ne
trade_client TradeAppSendet doPost 300 1443 134 74H,685.035 h2.449
trade_client TradeAppServiet doiGet 300 a7 287 74,994 6527 131.109
trade.EJSCMPHaldingHomeBean findBylUserD 300 a7l 256 B4,923.065 113.700
_portfolio_jsp_0 _ispSenice 300] 32 9929.574 17.329
trade.HoldingBean getObject 300 144954 i 7,530,364 0.051
com.ibm.servlet. engine webapp.SimpleFileServiet | doGet 300 2677 23 5623748 2100
trade.HoldingBean unsetEntityContext | 300 11672 0 4 764 661 0114

Figure 5-61 All Workloads table view

Chapter 5. PathWAI solutions for WebSphere

209

Figure 5-61 on page 209 shows that class
com.ibm.servlet.engine.webapp.SimpleFileServlet has been invoked 2677
times in the current collection interval, with an Average CPU time of 2.100 ms.
The collection Interval Time is 300 seconds, and the Total CPU Time to
handle the static pages during this 5-minute period is 5.6 seconds (5,623.748
ms).

The CPU cost does not seem excessive.

4. We use OMEGAMON XE for OS/390 UNIX System Services to determine the
impact on HFS /O rates. Select the Mounted File Systems workspace from
the navigator tree view.

CandleNet Portal™" meﬂusiness at the speed of light|
File Edit View Help
IEELAT 6582 EQuUHad 9B TE®
@ € [Prysical - mB x Page:[10f3 m B O
Gl I Mounted File Systems with ENQ Contention
#--(Z] DB2
Ell Mainframe Networks N SYSZDEN SYS0OSH
';*. Mount Point | File Systermn Name | VOLSER ‘ EMQ ARt | EMD AR Crt
-8 MWS Operating System
B MVE Sysplen 05
E|.E|l (57390 Unix (USS)
E% SC42:USIBMSC. SC480ENC
By Dubbed Address Spaces
Bl BFXPR e Values
=l Mounted F ns
-.[Bk Processes i
4 | »
4 ebusiness| <3 Physical 1| 2|
Page:[103 M B O
057390 UNIX Mounted File Systems
Status | o | Total | Percent
4 Mount Point File Systermn Name WOLSER | Status Duration Read V0s=iS || Writes fOsfS || Dir VO=iS || Quiesce
(Seconds) Size (k) | Used (k) | Used
22| /SC48NYehSphere/UQE0052 | BBO4G.UQI0052. HFS | WAS40A | Active B346 | 400320 380052 94 0 0 0
2| /SCA0NYehSphere/UGY0052 | BROS0.UQIN0S2Z.HFS | WAS40B | Active BE246 | 400320 380052 94 1] 0 0
2| /SC520WebSphere/URDY0052 | BROSZ UQA0052 HFS |WASADC | Active BB46 | 400320 380052 94 1] 0 0

Figure 5-62 0S/390

210

UNIX Mounted File Systems

We filter the table view in Figure 5-62 on the Mount Points File System
workspace associated with our WebSphere instances. We see mount points
for all three of our server instances because we have shared HFS. All three
server instances have zero Read 1/Os per second and zero Directory 1/Os per
second. We deduce that the static pages are being cached by USS since
there is no increase in I/O activity for the WebSphere.

We use OMEGAMON XE for Mainframe Networks to determine the impact to
TCP/IP. Select the Network Applications workspace from the ebusiness
navigator tree view.

Monitoring WebSphere Application Performance on z/OS

CandleNet Portal "
File Edit “iew Help

Wusiness at the speed of light

BEeEniEn S BQudal EB2TES

@ 2 [ebusiness - me x mem x DM x
o ebusiness = Current Byte Rate >= 1024 Current Datagram Rate >0
=0 Trade?
-4} Database 32000 g a0 L
Eéf Infrastructure 22000 g §
: ¥5 Network 24000 | Z a0
o g
TCFRIP:GC48 & 20000 # E
ETx Applications ~ 15000 g RG] et
2 12000 -
Bl Address Space - I 3
] ' 8000 310
- Bl Connections %UD I I 5 g
" Bl Gateways and Devices o -
uss [o] o
| B VLM Service Class Resources | f & o =
¥, WehSphere Z 2 5 3
- e S Jhd| @ i 3 3
<2 ebusiness | =S Phy’gma\l Applications Applications
[ii=T= mBE O x meEo x
Total Bytes > 0 Total Retransmissions > 0 _ Applizalione SumiianyTatle
| Byte Bytes In Bytes Out
i 12888888 I —— B 104 || Application Name | pave | | ast sample | Last Sample
= 8000000 4| I I L I 4;1 } I S || OMTSRYS 28937 1628 143056
R =7 g g |[osnMPORR 12442 5207 5E002
=28 88838 % & || omESRVS 8593 1100 41895
g § E § 2 § = % 7 25 | THETDY 0 0 0
2R EE & s F] g || omESRVA 0 0 0
Moo 0 |l oMPROUTE 1] 1] 1]
e Al M [TorT 0 0 0
| O Total Bytes In | ORetransmits Last sample| || WEBHOD 1] 1] 1]
| B Total Bytes Out| | | E Total Retransmits | |

Figure 5-63 Network Applications workspace

Looking more closely at the Applications Summary Table view on the Network
Applications workspace in Figure 5-63, we sort in descending order by Byte

Rate.
N Byte Bytes In Bytes Out Total Bytes | Total Bytes | Total Bytes
Hplalicaien Welg | Rate | LastSample | Last Sample | Last Sample In it Uizl Bz
OMTSRYS 28937 1628 143056 144684 8030 5545149 562549
OSHMPDPR 12442 G207 56002 G2209 1440877 | 13066348 | 14497226
OMESRWE 85499 1100 41895 42955 18502 679991 698493

Figure 5-64 Network Applications Summary Table view

Figure 5-64 shows that the OMTSRVS server instance has a Byte Rate of 28K

per minute (28937).

In our example, the application has a few static pages and they do not contain
large graphics. As a result, having our server instances handle the static
pages was not a significant impact to CPU, file I/O, or network traffic. In your
environment, requests for many different pages with a lot of static content
may result in significant overhead. Investigating the impact to these system

Chapter 5. PathWAI solutions for WebSphere

211

resources can help you determine if this is a good choice for your
environment.

5.4.7 Example 9 - Increased WebSphere activity

212

A system operator notices that system resource usage for a particular
WebSphere Application Server region has increased over the last hour.

In this example:

» We do not see any alerts for WebSphere or its connected components on the
navigator tree.

» Using the All Workloads workspace, we see that workloads are being
processed with sub-second response times. The application server instance
appears to be performing normally.

» We select a workload and drill down to the Selected Workload - History
workspace to see how its response time has varied over the last hour. We see
that the number of occurrences of this workload has increased significantly in
the last hour, and the average response times have been increasing linearly.

» Using the HTTP Sessions workspace, we see that the overall throughput for
this server instance has grown significantly over the last hour. We deduce that
increased demand is the cause of the increased system resource usage.

» Using the Application Server Overview workspace, we review the JVM
memory use over the last hour. We confirm that there is no memory leak and
that there is sufficient memory for further increase in throughput.

Procedure

1. We are notified by a system operator that a server region for the Trade2
application has increased its use of system resources over the last hour. It is
possible that we have a memory leak and the increase in resource usage is
due to increased garbage collections.

There are no alerts for WebSphere or any of the connected components on
the ebusiness navigator tree. Since there are no response time alerts for this
instance, workloads are either performing within response time goals, or
possibly the region is stalled and no work is being processed. Select All
Workloads on the ebusiness navigator tree for the Trade2 application.

Monitoring WebSphere Application Performance on z/OS

CandleNet Portal "
File Edit View Help

lm.eﬂusines_s at the speed of light

HEeEMIT S BQuUiEad IE2TES

@ €} [sbusiness -]

m B8 x| =]

B§ ebusiness

E--lmi= Trade?

[+ g, Database
léf Infrastructure

Elﬁ WehSphere

-

Ten Worst Average Response Times

[JEsB Home Delay Time
HELB Method Delay Time
CIEJB Remote Delay Tima

createHolding |7

Elﬁ, ApplicationServers PSR II' EuMS Delay Time
= % OMTERVA . FW - CluNpi Delay Time
Application Server Instance _ispService - 2 OuT4 balay Time

oo [Ey Application Serer Overdiew CImiscellaneous Delay Time

- By Application Server Instance £ doPost M Hztwot Socket Delay Time
By JZEE Server Cantainers tnogyusenf] B soL connection Delay Time
--Bly JIEE Server Beang _— B =0l ouery Delay Time
Server Bean hiethods 3 B 500 Update Delay Time
nads e - |ESeristDelay Time
B Lonoest Rutlmmu Workluac{a = getPortfolio [, 7 |Ouserdefined Delay Time

4

0 100 200 300 400
<5 shusiness Milliseconds
o B o
All Workloads - Current Interval
Warkload Murnber of Average | hMumber 3QL | SQL Query SAL Guery Mumber 2AL | SQL Updat)
Type Class Name Method Name Qccurrences N Time Query Delays | Delay Time | Delay Percent | Update Delays | Delay Time
=m| EJB Method | trade.TradeBean getPorfolio 362 307 [1] [1] 0.0 [1] [1]
2| EJH Method | trade TradeBean getHaoldings 352 307 1) 1] 0.0 1] 1]
== Serviet trade_client. TradeAppServet doGet 351 289 176 1} 0.1 A0342 a1
22| E.JB hethod | trade EJSCMPHoldingHomeBean findByUserlD 352 182 352 B4 333 1) 1)
| Servlet trade_client TradeAppServet doPost ga0 103 137 1] 0.4 40892]
| Servlet _portfolio_jsp_0 _jspSemice 352 al 1] 1] 0.0 1] 1]

Figure 5-65 All Workloads workspace

The bar chart view in Figure 5-65 shows that all workloads have average
response times of less than 300 ms. Looking more closely at the table view
for the All Workloads workspace, we sort in descending order by Average

Time:
Wiorkload Murmber of Awerage | Mumber SQL | S0L Que
Type < 23E ez o HamE QCCUMTeNCeS - Timg Query Delays | Delay Timnn;
E.JB Method | trade TradeBean getPortfolio 352 307 0 0
E.JB Method | trade TradeBean getHoldings 352 307 0 0
Servlet trade_client. TradeAppServiet doGet 351 2849 176 0
EJB Method | trade EJSCMPHoldingHomeBean findBylUserlD | 352 142 3452 A4

Figure 5-66 All Workloads table view

Figure 5-66 shows that the server instance has processed more than 352
occurrences of the worst performing workloads in the current collection
interval (5 minutes). We also see that EJB Method findByUserID has an
average response of 64 ms for SQL Query requests, so we do not appear to
have a database problem.

We have confirmed that this server instance is not stalled and is processing
workloads in a timely manner.

Chapter 5. PathWAI solutions for WebSphere 213

We have been told that this server instance has increased its use of system
resources in the last hour, so we want to determine if the average response
times for the workloads have also been increasing.

It does not matter which workload we choose, but EJB method findByUserID
is a good candidate because it contains SQL queries, so its response time
could be affected by contention caused by increased load.

Either click the link button on the All Workloads table row for method
findByUserID, or right-click the bar representing findByUserlID in the All
Workloads bar chart view to navigate to the Selected Workload - History
workspace. The Selected Workload Average Response Times view in

Figure 5-67 shows that the average response time for EJB method
findByUserID has increased from about 140 ms to about 190 ms over the last
hour.

CandleNet Portal "
File Edit View Help

Wusiness at the speed of light|

HE RN E

BEe s BQUEa Y EEDTED

@ 42 [ebusiness

lEI Database

léf Infrastructure
é, WehSphete

=)

Eﬂ;’Tradsﬂ —

2|

=65 ApplicationServers
. E=-Eg OMTSRVA

Appl!cat!nn
By Application
By Application

Bk JIEE Server Containers
By JZEE Server Beans
Ve

=]

Selected Workload Average Response Times -Last Hour =~
|JEJB Home Delay Time
|HEJE Method Delay Time
|OEJB Remote Delay Time
|Eums Delay Time

|JJHDI Delay Time

|CJTA Delay Time
|OMiscellanzous Delay Time

| M Netuork Socket Delay Time |
EsoL connestion Dalay Time |
| B saL Query Delay Time

| M5l Update Belay Time

M Sendet Delay Time

Server Instance
Server Overview |
Server Instance SMF Interval Stati |

spuoaa gy

r Bean Methods
as

4 ebusiness

1]
AZME02 021000 12M602 02:20000 12016002 02:50.00

B

mBeo x
Selected Workload - History Selected Workload Occurrences - Last Hour
Mumber of | Average
% Recording Time Method Mame 3 Timg o
121602 030500 | findByllzerD | 352 192 4|
12MRM2 030000 | findBylsedD | 421 171
12/1602 02:55:00 | findByUserlD | 368 189 o |
121602 0260:00 | AndBylzelD | 366 141 —
121602 024500 | findBylzerD | 368 153 .
121602 02:40:00 | findByldzedD | 331 191
121602 023500 | findeylsedD | 262 151 _l_'l >
4 *

ClassName:trade . EJSCMPHoldingHomeBean Method...

o
12/16/02 02:10:00 12/16/02 02:30:00 121502 02:50:00

Figure 5-67 Selected Workload - History workspace

214

The Selected Workload Occurrences view shows that the number of
occurrences (in each 5-minute interval) for EJB method findByUserID has
increased from less than 50 to about 350 in the last hour.

Monitoring WebSphere Application Performance on z/OS

As the load steadily increased, the average response also increased fairly
linearly. In fact, the increase in average response time is relatively small
(<50% increase) compared to the increase in throughput (> 600%).

We want to understand whether the overall throughput for this server instance
has also increased significantly in the last hour.

Select HTTP Sessions on the navigator tree view. Figure 5-68 shows that the
number of HTTP Sessions over the last hour has also grown significantly,
from about 20 to 180 sessions.

It appears that the increase in system resources usage over the last hour is
due to increased demand for the Trade 2 application.

CandleNet Portal ™ musiness at the speed of light
File Edit “iew Help
EEBMAT S8 BOudal 3BT ES
@« [ebusiness - me x| mEO x
B§) ehusiness - ;
G4 Trade2 Number of HTTP Sessions -Last Hour
Mgy Database 120
!éf Infrastructure
Ei% WehSphere 460
=¥ AnplicationSenvers
= OMTSRYA 140
. B Application Server Instance
¢ p-Bly Application Server Overview 120 —
Bl Application Server Instance £
By JZEE Server Containers 100
-.[Ey JZEE Server Beans
Bl .J2EE Server Bean Methods 20
Bl AllWorkloads
By Longest Running Workloads 80
By Datasources
3 = a0
4 »
£E ehusiness 131672 070500 12HB/02 D2:15:00 1241802 02:35:00 121602 D2:35:00 121602 02:45.00 121602 02:55:00
m B e x
HTTP Sessions - Current Interval
Session ‘Workload Create Date Creating LastAccessed
1D Type Class Name Method Name and Time IP Address Tirme
resziusBIu_ViGWpg3wWCLlanz Serdet _welcome_jsp_0 | _jspService 121602025752 [10166 12MB/0202:57:52 i’
IWyziveF Q1 u_W41Wn_bibCLyyT Gervet _welcome_jsp_0 | _ispSenice 12602025746 | 10.1.6.6 12M1B/02 02:57 46
NCMZIRPpT U_WI3WpyIAC Lyt Servet _weltome_jsp_0 | _jspSemice 12ME02 025757 | 10166 12/16/02 025757
T azibD G u_VIKWpkh CL3ix Sendet _welcome_jsp_ 0 | _jspService 12M6M0202:57:56 | 10166 12MB/0202:57:56
KodziGIZTu_V4kWp3BCLIT_ Servlet welcome_jsp_0 | _jspService 12MB/02 025744 [101.6.6 12MB/02 02:57:44 =

Figure 5-68 HTTP Sessions workspace

Figure 5-67 on page 214 shows that a steady increase in load has resulted in
a linear increase in response time. If the load continues to grow, the current
server regions will eventually reach a point where they cannot handle the
extra load. This could result in significantly longer response times.

JVM memory is one resource that can become exhausted, resulting in poor
response time. We want to understand memory use over the last hour to try to
determine if we can handle additional load.

Chapter 5. PathWAI solutions for WebSphere 215

4.

Select Application Server Overview on the navigator tree view. The
Application Server Overview table view in Figure 5-69 shows JVM memory
use for two server regions for this server instance. We modify the chart view
to plot memory use over the last hour for one of the server regions (it doesn’t
matter which).

CandleNet Portal "
File Edit View Help

Wusiness at the speed of light|

HEeEMIT S BouWiEtad IEB2TES

@ €2 [sbusiness -]

mABe x =]

B§ ebusiness
E--lmi= Trade?
ﬁ Database

=-Bgy Infrastructure

Elg, WehSphere
F_Iﬁ ApplicationServers
OMTESRVA

h

=-5a

|

=
= JVYM Memory Use - Last Hour
280000000 T T T T T T T T T T T T T T 1
260000000 |
240000000
220000000
200000000
180000000
160000000
140000000
120000000 ’
400000000
20000000
BO0000000
40000000
20000000

Ik Total Memory Size
b Uzed Memony Size

S
1

I\
/
N
/

000120 Ta
00:01:20 T9
00:51:20 T9
00°GH-Z0 20
D0°0Z°Z0 20
000820 Ta
006720 T
00-57:20 T9
00°0£°Z0 2v0
00:0£:20 £
006820 T
006820 T
00- 020 Z9
00: 020 Z09
00:GH:Z0 20
006420 T
00:0%:20 T
00:0%-20 Z9
00:55-20 T9
DOGEE0 Tl
00:00:£0 T
00:00:£0 T

45 ebusiness
mBen
Application Server Overview
Sample Date S Free JUM Total Jwhd Used
and Time mMemaory Size | Memory Size | Memory Size gerver Mame
12016/02 03:01:20 | 241214736 | 268761600 | 27546864 OMTSRWA
12016/02 03:01:44 | 59841892 2ZBA7E16800 | 208919608 | OMTSREWA

Figure 5-69 Application Server Overview workspace

216

The chart view in Figure 5-69 shows that maximum JVM memory use has
been increasing linearly over the last hour, as throughput has increased. The
minimum data points on the graph indicate the memory use after garbage
collection. The good news is that the garbage collector has been able to free
most of the memory after each collection, and the minimum data points are
not increasing over time, which confirms that we do not have a memory leak.

Extrapolating the maximum data points on the graph, it appears that we have
sufficient memory for additional throughput. However, we need to continue
monitoring memory use, because garbage collections will take longer to run
and may run more frequently as our memory use approaches the total
memory available.

Monitoring WebSphere Application Performance on z/OS

5.4.8 Example 10 - Identify a method called with high frequency

Users complain that some of the business functions are experiencing poor
response times.

In this example:

>

We receive an alert on the navigator tree that average response times for
some workloads have exceeded the predetermined thresholds.

Using the All Workloads workspace, we see that the workload with the
longest average response time is spending most of its time calling user
methods and other EJB methods.

We drill down to the Selected Workload Delays workspace and see that this
method is waiting about 50% of the time for user method debugOut. We
suspect a configuration error.

We select the Ten Most Frequently Used Workloads workspace and confirm
that the debugOut methods from several classes are heavily used.

Procedure

1.

We receive an alert on the ebusiness navigator tree. Position the mouse
pointer over the alert (red triangle icon) to show details. Figure 5-70 shows
that the Inventory Control application has a critical alert for server
instance OMESRVA. The alert WAS _Workload AvgResp Critical indicates that
one or more workloads have exceeded the threshold for average response
time.

CandleNet Portal " ICandle

File Edit “iew Help

FEBEN AT Se2 BQuidald 8BS TE

L

@ 4 [ebusiness

E TradeZ2

ﬂ Inventary Gantral

-0 DataServer

Elﬁ ViehSphere
=i

Vi men

A CRITICAL
@l WAS Workload AvgResp Critical OMESEVA:SC48:KWWIT 12/14/02 00:03:31

|Selectw0rkspace link button to view event results.

Figure 5-70 Alert on the ebusiness navigator tree

Chapter 5. PathWAI solutions for WebSphere =~ 217

2. Click the link button for WAS_WorkToad_AvgResp Critical in the critical alert
window to display the Current Situation Values table. Figure 5-71 displays two
EJB methods and two servlets that have exceeded the response time
threshold. For example, the deliverySession method has an average
response of almost 7 seconds (6937 ms).

Average Server Wiorkload Mumber of
iy Timg Mame Type tlees Weme LiBed NEme Ocecurrences
OMESREYA | EJB Method | deliverySessionPackage.DeliverySessionBe... | deliverySession i1
OMESRWA | Serviet _DEAGResUlts_jsp_3 _jspSemice B
OMESREWA | Serviet _MOAGResults_jsp_3 _jspSemice 79
CMESEYA | EJB Method | newoarderSessionPackage MewOrderSessio.. | newOrderSession |78

Figure 5-71 Current situation values

3. Click the link button in Figure 5-70 on page 217 to expand the navigator tree
to display the A11 Workloads selection for instance OMESRVA. Select the Al1
Workloads workspace for instance OMESRVA.

CandieNet Portal "
File Edit Wiew Help

Wusiness at the speed of light

FEBRIT S BaQuidal B2 b&

TR

@ 42 [ehusiness -]

m B e

Elﬂ Inventary Contral
- Mg} DataServer
Bl WehSphere

=6 AppSener
| =By OMESRYVA
H By Application Server Instance
Bl Application Server Cverview
- By Application Server Instance £
-[Ehy J2EE Server Containers

Ten Worst Average Response Times

getHome:

_ispService:

orderStatusSession

_ispService:

priceuaoteSession

OEJe Home Delay Time
EEJE Method Delay Time
[EJB Remate Delay Time
Eums palay Time

Oune! pelay Time

OuTA Delay Time
Ohtiscellaneaus Delay Time

Bk J2EE Server Beans —jspSeTvice B Netuok Socket Delay Time
By J2EE Server Bean Methods newOrderSession BlsoL connection Delay Time
L Dads pt J B 5oL Query Delay T|rT|e
--Eg Longest Running Workloads T BsnL update belsyiine
-..[B) Datasources | i B serist Dalay Time
L LTTE G ipne il defiverySession: Ouserdefined Delay Time
4 [0 1000 2000 3000 4000 5000 6000 7000
5 ebusinsss | =S Phygica\l Williseconds
Page:] 1of3 I 8O x
All Workloads - Current Interval
Workload Humber of Average | Mumber EJB | EJB Method | EJB Method Humhber
Type e et i e CICCUrrEnces i T\mg Wethod Delays | Delay Time | Delay Percent | User-defined Delays &
@] EJB Method | deliverySessionPackage. DeliverySes... | deliverySession g 6937 620 3978 a7.3 1664 s
== Sendet _DEAGResults_isp_3 _IspSemice [BE6T 3368 6730 98.0 104
= Senvilet _MOAGResults_jsp_3 _jspSenice 79 3485 BR42 3400 975 4461
@) EJB Method | newaorderSessionPackage MewOrder... | newOrderSession 74 3370 7097 825 24.4 17335
| Servlet _POAGResults_jsp_1 _ispService 11 1306 136 964 T38 TES
=2 EJB Method | priceQuoteSessionPackage.Pricequ.. | price@uoteSession |11 963 37h 361 ar4 L] =
= SI.D Metnnn | moasnedaeSan minnDasbnmn Maafedne | eofamn o3 T n n | nn ERES -

Figure 5-72 All Workloads workspace

The bar chart view on the All Workloads workspace in Figure 5-72 confirms
that four workloads have average response times of over 3 seconds.

218

Monitoring WebSphere Application Performance on z/OS

We use the bar chart legend to see that these workloads are primarily waiting
for EJB methods and user-defined delays (blue and aqua on the bar chart).

We drill down on the workload with the longest response time to understand
what is causing this delay.

Either click the link button on the All Workloads table row for method

deliverySession, or right-click the bar representing deliverySession in the
All Workloads bar chart view to display the Selected Workload Delays

workspace:
CandleNet Portal " Wusiness at the speed of light
File Edit View Help
AERLAT S5 OQuUikal B rad
& @Iebusiness -] mBa x mEO x
=0, TradeZ 4 L0 e e e]
Eﬁ Inventary Cantrol Selected Workload Delay Average Response Times
N5, DataServer
=gy WebSphere
Elg AppSener gueryOrderinstances:
=B OMESRYVA J
. Bl Anplication Server Instance U e
i Ly Application Server Oveview setHome
- By Application Server Instance £] I I T I I I T ‘
- Bl JZEE Server Containers getCustomerDelivery Cnt
--[Bly JZEE Server Beans 7 :
@Y} JIEE Server Bean Methoos processOrderlinelnstance: ‘
FELE getCustomerinstance:
Bl Longest Running YWorkloads
By Datasources og
B HTTP Sessions —~ Set0i J
[y TV, j
4]_ L2 0 20 40 &0 80 100 120 140 180 180 200 220 240 260 280
& ehusineasl Milliseconds
mEO x
Selected Workload Delays - Current Interval
Delay Delay Delay Numberof | Average | Delay CPU
i Method Mame Type Major Name Minor Mame Qccurrences Time FPercent Time
22| DeliverySes... | deliverySession | Method Call irmwhase IRWAWBase debugout 808 175 4510 3401605 |la
= DeliverySes... [deliverySession [EJB Method Call [deliverySessionPackage.DeliverySes... [processOrdetlinelnstance |40 260.4 330 4,298.392
@|a.DeliverySes... |deliverySession | EJB Method Call | deliverySessionPackage.DeliverySes... | quenMNewOrderinstances 40 a8.1 111 1,094,208 |1
1 3
ClassName:deliverySessionPackage.DeliverySessionBean MethodName:deliverySessicn

Figure 5-73 Selected Workload Delays

Figure 5-73 shows detailed delay information for method deliverySession.
Looking more closely at the table view on the Selected Workload Delays
workspace, we sort in descending order by Delay Percent.

Delay Delay Delay Mumber of | Average Delay
Tupe Major Mame Minar Mame Jccurrences Time Percent
mMethod Call inmwhase IRVWBase dehugCut a0a 174 450
EJB Method Call | deliverySessionPackage. DeliverySes... | processOrderlinelnstance |40 260.4 330
EJB Method Call | deliverySessionPackage.DeliverySes... | guenyhewdrderinstances 40 aa.1 111

Figure 5-74 Selected Workload Delays table view

Chapter 5. PathWAI solutions for WebSphere

219

Figure 5-74 on page 219 shows that method deliverySession makes an
average of 808 calls to method debugOut, accounting for 45.0% of its
response time. Based on the method name debugOut, we suspect that this
workload is performing unnecessary logging.

From the ebusiness navigator tree, right-click All Workloads and select the
Ten Most Frequently Used Workloads workspace.

CandleNet Portal " Wusiness at the speed of light
File Edit Wiew Help
HERTRAIFT 58 BHoUEa 2B TES
@ 42 [ebusiness | mBa. x
H =] ﬁ', AnpSerer -
-8 OMESRVA
Bl Application Server Instance
Bl Application Server Overview
Bl Application Server Instance SMF Interval Statistics
Bk J2EE Server Containers
Bl J2EE Server Beans
Bl J2EE Server Bean Methods
: TR AllWorkloads -:1
%5 ebusmessl
mBeEO x M-8
Ten Most Frequently Used Workloads e e e e e
5 Y Number of Occurrences
Mumber of
&
Class Name Method Mame Orounences
23| | itemEntityP ackage.ltemEntityBean debugOut 8592 e rice
23| | orderlineEntityPackage. OrderlineEntit... || debugOut 5535 kage 0 Out.
&) | stockEntityPackage StockEntitBean debugOut 5354 o o
23| | orderlineEntityPackage. OrderlineEntit... | makeConnection | 2497 Fhe
=8| | stockEntityPackage. StockEntivBean | makeCaonnection | 2293 s sitoms EntiyBs aud sbu gOUL
2| | iternEntityPackage ltemEntityBean makeConnection | 1911 - emEntityBean/makeConnsction [/f?\
&8 | customerEntityPackage.CustomerEnt... | debugOut 1847 tockEntityBean/makeConnectionl %
23| | districtEntityPackage.DistriciEntityBean | debugCut 1243 JineEntityBean/makeCannaction] 2 —
23| | orderEntityPackage. OrderEntityBean debugOut 1134 rige S
=8| | iternEntityPackage ltemEntityBean efitemPrce 97g I
iy g L g .0 gOut. [/J
...ckage.ltem EntityB ean/debugOut
0 1000 2000 2000 4000 5000 6000 7000 =000 0000
Invocations
A i

Figure 5-75 Ten Most Frequently Used Workloads workspace

We sort the table view on the Ten Most Frequently Used Workspaces
workspace from Figure 5-75, in descending order by Number of Occurrences.
We see that method debugOut is being called excessively by a number of
business functions. We can pass this information to the application support
team to determine why this debug method is being called so frequently.

5.4.9 Example 11 - Detecting multiple concurrent problems

Int
pro

'S

220

his example we constructed a scenario in which three of the preceding
blems are happening concurrently:

Example 1: A specific user is experiencing slow response while other users
work well.

Monitoring WebSphere Application Performance on z/OS

» Example 4: There is a problem in CICS Transaction Server that is impacting
WebSphere.

» Example 7: Transaction hang or time-out, in this case due to a problem in
WebSphere MQ.

In fact, any combination of the preceding examples could have been run
concurrently, since OMEGAMON XE’s event manager percolates alerts from all
agents running on all platforms to the navigator tree view.

Procedure

1. We receive an alert on the ebusiness navigator tree. Position the mouse
pointer over the alert (red triangle icon) to show details.

CandleNet Portal " VCandle

File Edit “iew Help
EErRBERAAD S aQouial @RSTES
@ < |ehusiness =l

{ A CRITICAL

I & | EIS_ MO Eacklog MO4E : SC48 i MOESA 01/09/03 03:28:44
@ | cIcsplex ClassMax Critical SC48.SCSCERWL 01/09/03 03:21:12
@ | WAS Workload AwgResp Critical OMTSRVA:SC48:KWWI 01/09/03 02:58:02
@ | WAS LongRun Resp Crit OMESEVA:SC48 :¥WWT 01709703 02:51:44

Selectworkspace link button to view event results.

Figure 5-76 Alerts on the ebusiness navigator tree

Figure 5-76 shows that there are four concurrent alerts:

— Alert EIS_MQ_Backlog indicates that the MQSeries queues for application
EIS have a backlog.

— Alert CICSplex_ClassMax_critical indicates that CICS region SCSCERW1
that processes the CICS TG requests for application EIS is experiencing
CICS task-related issues.

— Alert WAS_Workload_AvgResp_Critcal for server instance OMTSRVA
indicates that one or more workloads have exceeded the threshold for
average response time.

— Alert WAS_LongRun_Resp_Crit for server instance OMESRVA indicates
that one or more workloads have exceeded the response time threshold
for a single invocation.

Chapter 5. PathWAI solutions for WebSphere 221

222

5.

The question of which alert to investigate first will probably depend on the
priority of the business applications. For example, customer-facing
applications will probably have a higher priority than internal applications. In
this case, you may know that the most critical applications depend on CICS.

Another determining factor is how many users are affected. For example, the
WAS_Workload_Avg_Resp_Crit indicates that the average response time for
all users is exceeding the threshold. This is probably more serious than the
WAS_LongRun_Resp_Crit alert, which indicates that specific users have
exceeded the threshold.

You can click the link button for any of these alerts to see the Current Situation
Values table, which will give you more details. For example, the Current
Situation Values Table for alert WAS_Workload_Avg_Resp_Crit will display
how many workloads have exceeded the average response time threshold,
and their response times. Refer to Figure 5-38 on page 196 for an example.

Clicking the link button for a specific alert will also expand the navigator tree
to reveal the workspace that contains the relevant performance metrics for
that alert. For example, the WAS_Workload_AvgResp_Crit alert automatically
expands the navigator tree to the All Workloads workspace for the relevant
application server instance.

You can continue problem diagnosis as described in the preceding examples.

Example 11 - Advanced procedure

An alternative to the previous procedure is to use the custom business view
for the PRR application; refer to “Customized business view” on page 172.
With this approach we can proactively monitor all the key components of the
PRR application from one workspace.

Monitoring WebSphere Application Performance on z/OS

CandleNet Portal ™
File Edit “iew Help

Wusiness at the speed of light

BEBRMAIT S Boudad 3F2 T E=D

Figure 5-77 Custom business view

@ 4} ebusiness =] DB x mEO0O x omEO0 x
& chusiness CICS Transaction Analysis WebSphere MQ Queues
__ Ej;;ﬁwoumml Tra"fg“'m s wgg E'.?i’;f:d %fn% " CurrentDep Queue Name Total Opens %Fuul fr cets
B ? CEMl TaskLims 00:00:00.00| 00:00:0C JMETEST.QUELE 4 0.0
Infrastructure CEMI TaskLims | 00:00:00.00[00:00:0C 0[JMSINTE 1 0] Enabled
TPMonitar CEMI TaskLims | 00:00:00.00[00:00:0C 2| 5YSTEM.CLUSTER REFOSITORY.Q: 2| 0.0]Enabled
=] %ehsnhere CEMI TaskLims | 00:00:00.00[00:00:0C
El-#g ApplicationServers 4 ¥ |
-G OMTSRYVA : I 2]« 2l
B Application Se osn x mea x
B} Application Se JMS Summary M@ Listener USS Processes
- Bk Application Se T m
otal Parent Process [0 | ASID | Command Mame | Jobname | UM Run Time%
By JIEE Sarver ieleNonE | Time 1] 0030 [sh THELIST 0.00] On
- By JZEE Server B 5 =
& gueueiMO4B/CS0 BACDBC1BD324 G653 A 328143 | o074 sh IMSLISTZ 0.00] on
o BYJIBE SewerB |l gpue MO4BICSO BACOBCIBATT 289 | 33882577 0083 | java IMSLISTS 0.01 | Mu
o : F‘ Alwndnads queuEMR4BIIMS TEST GQLUEUE 735
fqueueMG4B/CS0.BECDBCZEDDES... | 212 ll
42 ehusiness I 1 I 4 | 2
N = OB
YWebSphere Application Server - All Workloads
Mumber of Rate of Tatal Average | Max IMS Uset-defined Tatal
fldass Nams Methne hains Cccurrences | Occurrence Time ks T\mg Time Delay Percent | Delay Percent | CPU Time
ersweics. ctg.pe ERWWCTGPCBean priceChangeEJBdriver | 55 0,000 485521 164701 | 0.0 99.4 4,959,668 -
_JIMSResults_jsp_4 _jspSerice fid 0.000 [AEECI 8021 14808 [1.9 1.1 10,860.368
trade_client TradeAppServiet doGet 3 0.000 m420 2140 3202 0.0 0. 2,865.562
trade_client TradeAppServiet doPost 3 0.000 6005 2001 6237 0.0 0. 1,905.047
trade. TradeBean getPartfolio 4 0.000 3445 861 1637 0.0 0. 2,426.418
trade TradeBean aetHoldinas 4 0.000 3445 861 1637 0.0 (i1l 2426054 | T

Figure 5-77 shows the custom business view that we configured for
application PRR. We can see the following alerts related to the PRR

application:

— The WebSphere MQ Queues view has an alert that the depth of the trigger
queue used by the PRR application has exceeded our threshold of three.
This view also has an alert that the queue is Get disabled.

— The CICS Transaction Analysis view has an alert that multiple CSMI
transactions are waiting due to a CICS transaction class limit.

— The WebSphere Application Server - All Workloads view indicates that
two workloads have average response times greater than 3 seconds.

Chapter 5. PathWAI solutions for WebSphere

223

224 Monitoring WebSphere Application Performance on z/OS

WebSphere Studio
Application Monitor

In this chapter we describe what WebSphere Studio Application Monitor (WSAM)
is, how it works, and how it can be used to investigate sample performance
problems that we devised for our tests.

© Copyright IBM Corp. 2003 All rights reserved. 225

6.1 What WebSphere Studio Application Monitor is

WebSphere Studio Application Monitor (WSAM) is the z/OS member of an
integrated family of performance management products. This product family
supports WebSphere Application Server on all the platforms on which it runs.

WSAM provides visibility into applications deployed in WebSphere. To function,
there is no need to modify application byte code or understand
application/source code in order to monitor applications. This means that
installation takes days rather than weeks.

WSAM helps operations improve service levels by providing operators the ability
to monitor and optimize performance, as well as diagnose and fix problems in
development, quality assurance, and production environments.

Figure 6-1 provides a solution blueprint of the WSAM product, which manages
your application from the inside out. Currently, WebSphere Studio Application
Monitor fully monitors tiers 1 and 2 (Java and J2EE), and part of tier 3 (J2EE
API).

TIER 1: Java Code

TIER 2: J2EE Code

\ TIER 4: Systems Services

TIER 3: J2EE API

_ TIER 5: Infrastructure

D = IBM WSAM managed tiers.

Figure 6-1 WebSphere Studio Application Monitor solution blueprint

226 Monitoring WebSphere Application Performance on z/OS

WebSphere Studio Application Monitor perspective

WSAM has an application-centric point of view into your enterprise. It lets the
operator look at enterprise activity from the inside out, from individual Java class
and method calls through J2EE Application Server utilization. WSAM gives you
visibility into the WebSphere “black box” and provides the information necessary
for managing today’s complex business environments.

In addition, WebSphere Studio Application Monitor is designed with operations in
mind. Generally, the user is not expected to have development resources or
knowledge to be productive with the tool. However, support from the application
development team would provide additional insight for problem determination
and performance management.

WebSphere Studio Application Monitor features

WSAM offers operators the following useful features for troubleshooting and
operations planning:

» Drill-down methodology

Progress from a high-level view of an enterprise down to thread-level detail,
as part of real-time problem determination or as part of performance analysis
and reporting of historical data.

» Continuously monitor and archive availability and activity information
Determine what is normal and what is exceptional resource use.
» Configurable Monitoring Level

Limit the impact of data collection on monitored servers by specifying
configurations by default, according to a schedule, or on-the-fly.

» Automated monitoring

Define specific conditions (traps) which, when encountered, trigger logging
and/or e-mail delivery of alerts.

» In-Flight Request Search
Identify and take actions on specific problem threads.
» Customizable security

Regulate access to WebSphere Studio Application Monitor with user IDs and
passwords. Regulate access to monitoring functions based on either
predefined or custom roles (Administrator, Operator and User), applied on a
user-by-user basis.

» Compare runtime environments

Define logical groups of servers, and compare configurations and installed
binaries on “identical’ systems.

Chapter 6. WebSphere Studio Application Monitor 227

» Performance analysis and reporting

Define and run reports, based on historic data, on virtually any aspect of
enterprise use. Reports can detail individual method, Request or SQL calls,
WebSphere resource use, or server availability. The scope of reports can
include individual servers, server groups, or the entire server farm, and can
contrast results against benchmark data sets.

6.2 How WebSphere Studio Application Monitor works

In this section, we provide an overview of WSAM, and describe each of its three
major components.

6.2.1 WebSphere Studio Application Monitor architecture

The WSAM architecture consists of three main parts: Data Collectors, the
Application Monitor, and the Monitoring Console.

Data Collectors

Data Collectors are installed and attached to each WebSphere instance you
want to monitor.

Application Monitor

The Application Monitor is an independent set of services that aggregates the
data provided by Data Collectors, and makes sense of it.

Monitoring Console

The Monitoring Console is the client application that allows you to interact with
the Application Monitor (and your Data Collectors). The Monitoring Console is a
Web-based application, so it can be accessed using any HTML browser.

Figure 6-2 on page 229 provides an overview of how the IBM WebSphere Studio
Application Monitor works.

228 Monitoring WebSphere Application Performance on z/OS

ere” Studio
Application Monitor

2

‘\ WSAM User

Weh Servers =l
ge

-~
INTERNET 7 ‘ E
C_
-
22

Customers

i
| 1IE

i

Firewall

Data

[= Application Servers with IBM WSAM Data Callector

Figure 6-2 IBM WebSphere Studio Application Monitor

WSAM is installed on machines external to the machines running your
applications. WSAM monitors your applications via Data Collectors that
communicate with the Application Monitor. Each user uses a Web browser client
to access WSAM.

6.2.2 WebSphere Studio Application Monitor data collection

In this section, we describe the data collector, which is the component that
resides on all devices being managed.

The lifestyle of WSAM data collectors

The core of WebSphere Studio Application Monitor data gathering capability is
the WSAM data collector that runs in each server region. Although each region
has its own copy of the WSAM data collector, all the data collectors within a
server instance are treated as one. This means that whatever you configure or
select for monitoring on the Application Monitor automatically applies to all the
server regions in the WebSphere server instance you selected.

Chapter 6. WebSphere Studio Application Monitor 229

The WSAM data collector does not require any modification to application code.
It does not peek inside the classes and methods used in the application; rather, it
operates at the container, EJB, servlet, and JSP level.

(exit IEFUB3)

<.-..-..-.-l

Application Server SMF Records

Instance

WSAM Service
Address Space

Server Regions | | Server Regions | | Server Regions ;.
| 4Data Collector | | AData Collector | | 4Data Collector .4

[=

\
e \
b ‘

|

\ WebSphere® Studio /
Application Monitor /
N /

Figure 6-3 WSAM data collector architecture

WSAM data collector configuration
WSAM data collectors can be configured to run in one of three modes:

» Production
» Problem Determination
» Profiling

The Production mode has the least overhead on the system, yet provides most of
the availability data for the servers and the system resources used by those
servers. Only the most detailed information, such as method traces, is not
monitored in Production mode.

The Problem Determination mode is the default. It supplies the data available in
Production mode, plus (in the distributed Cyanea/One products) additional
problem determination functions. In the current release of IBM WebSphere

230 Monitoring WebSphere Application Performance on z/OS

Studio Application Monitor on z/OS, the Problem Determination and Production
modes provide exactly the same information.

The Profiling mode uses more resources, but it allows you to monitor down to the
level of methods and SQL calls. If you need Profiling mode to diagnose a
particular problem, you can turn in on and off dynamically for the server or the
instance you are looking at.

Furthermore, you can assign configurations to WSAM data collectors by default,
according to a schedule, or by explicitly and immediately setting the data
collection mode through the Performance Management -> Monitoring on
Demand section of the WSAM Monitor Console.

Service address space

The WebSphere Studio Application Monitor service address space collects data
from SMF type 120 records.The records are viewed by an SMF exit (IEFU83),
which extracts the data and hands it to the service address space. Here it is
stored in memory until it is either requested by the monitoring console, or a
predefined time period has elapsed.

Note: Collecting data from SMF is optional. You will be able to collect and
monitor most data relating to the WebSphere servers even if SMF is not
collecting type 120 records.

To collect the appropriate SMF data, you need to ensure that the WebSphere
servers have been configured to write Server Interval SMF records and
Container Interval SMF records. This is done via the SMEUI.

Currently, the service address space only collects and forwards SMF data.
Additional functions may be added in future releases.

6.2.3 WSAM Application Monitor

The WSAM Application Monitor is the core of WebSphere Studio Application
Monitor. In this section, we describe its implementation and its interactions with
other components, in particular with respect to the WSAM data collector.

WSAM Application Monitor implementation

The WSAM Application Monitor runs under AIX or Linux. It runs as a Java
service on those platforms, and requires both WebSphere and DB2 products to
be installed. See Figure 6-4 on page 232 for an overview of its structure.

The WSAM Application Monitor’'s use of WebSphere is simply to allow remote
access to the Monitor from Web browsers. The WSAM Application Monitor itself
is pure Java.

Chapter 6. WebSphere Studio Application Monitor 231

Managed
Application Server

”
ﬂ it u E

.2 Data Collector
- Publishing Client
2 Command Agent

Publish Traffic ; a Snapshot Traffic
:
.
v + -
| --=Pp -~
Publish Server < Kernel Vlisualization Engine
. » Services: o Administration
- Lookup o Rvailability
= - Registration e Problem Determination
Archive Agent #= = ! -> Recovery o Performance Management
- Configuration
f LY »
_— ! Snapshot Traffic
Rvailability o o cccccccaaaaa. '
Manager |

Archive Traffic

Figure 6-4 WSAM Application Monitor

The WSAM Application Monitor is designed to run on distributed platforms for
scalability and availability, although in our tests we ran everything on a single AIX
server. WSAM data collectors are configured with two IP addresses each (both
the same in our tests), so that two separate kernels may service them.
Coordination among the distributed components of WebSphere Studio
Application Monitor is accomplished by means of J2EE communications.

Data traffic

Two types of traffic may be distinguished flowing from data collectors to the
Application Monitor

Publish Traffic

Publish Traffic includes three types of data, which differ in use and in the
mechanism used to collect it: Application Activity data, Server Availability data
and Application Server Availability data.

Publish Traffic is archived for subsequent retrieval on demand, as described in
“Data archival’ on page 233. In addition, the WSAM Monitor Console periodically
refreshes its display of Server Availability data (in the Application Overview
section) to keep up-to-date with the Publish Traffic.

232 Monitoring WebSphere Application Performance on z/OS

Snapshot Traffic

Snapshot Traffic is gathered only when you request it; you can request Snapshot
Traffic data and view it using the WSAM Monitor Console (in the In-Flight
Request Search section).

Snapshot traffic comes from WebSphere via the WSAM data collector. Snapshot
Traffic includes information about active threads. This includes both summary
information as well as stack traces at the method level.

Data archival
Data from Publish Traffic ends up in the DB2 database of performance data.

The amount of data stored in the DB2 performance database can be very large,
especially if Profiling mode is used (see “WSAM data collector configuration” on
page 230). Since the database is intended mainly for historical reports, you
usually only need to archive a small proportion of your performance data.

If a particular problem is under investigation, you can increase the sampling rate
(up to 100% if need be) via the Administration -> System Properties section of
the WSAM Monitor Console. For the majority of the examples described in 6.5,
“Running the examples” on page 237, we used a 1% sampling rate.

6.2.4 WSAM Monitor Console

The WSAM Monitor Console is the component of IBM WebSphere Studio
Application Monitor that an operator uses to access all product functionality.

The WSAM Monitor Console is an HTML-based thin client application that runs
on IE 5 or later, or Netscape 7 or later.

6.3 Performance methodology

This section describes the philosophy and process of WebSphere Studio
Application Monitor performance methodology.

WSAM problem-solving philosophy

WebSphere Studio Application Monitor approaches the detection of performance
problems from an operator’s point of view. Very often, operators do not have
direct support from developers and yet are given applications to deploy and run.
Therefore, WSAM provides a methodology for performance analysis which does
not rely upon the availability of developers or source code.

Chapter 6. WebSphere Studio Application Monitor 233

First, we discuss the issue of isolating your performance problems. We present a
drill-down methodology that allows operators to start with a real-time view of the
data center, and allows them to methodically drill down to the cause of the
problem. This does not require familiarity of the deployed application code.

The design of IBM WebSphere Studio Application Monitor lends itself to a
top-down approach to performance management, as shown in Figure 6-5.

Enterprise

Application Oveview

Application
Avaliability Manager In-Flight Request Search
Server
Systems Resources Analysis Application Activity Display
Thread
Stack Trace

® Suspend

Request

|
Method/SGL Trace S

¢ Cancel Thread

Figure 6-5 WSAM monitoring philosophy. The eiderdown starts from the Enterprise and progresses to
Application, then Server, then Thread, then Request

In addition, you can analyze performance of transactions after they have
completed. In the Performance Analysis and Reporting section, you can analyze
performance and drill down into the problem.

WebSphere Studio Application Monitor understands that one size does not fit all.
Since there are trade-offs between the amount of data collected and system
performance, you can configure the application monitor to capture the
appropriate amount of data, on a server-by-server basis. This configuration can
be permanent, or can vary based on a schedule, and can always be overridden

234 Monitoring WebSphere Application Performance on z/OS

to diagnose a particularly interesting problem; see “WSAM data collector
configuration” on page 230 for more detail.

WSAM problem-solving methodology

The usual starting point for solving a problem with an Enterprise deployment, is
the Application Overview section. This display shows you, in graphical form, how
many servers are active, the volume of throughput, and an indication of response
time for your entire server farm.

Drill-down approach

From the Application Overview section, you can proceed directly to one of three
more detailed views of any particular server group: In-Flight Request Search,
Server Availability Detail, or System Resource Comparison:

» In-Flight Request Search

Lets you identify and act upon resident threads. Useful if you expect that the
problem transaction has not completed.

» Server Availability Detalil

Provides automatically updated server availability metrics for each server in
the group, like absolute and delta volume, memory, and CPU use. Useful to
compare servers within a group in more detail, and to let WSAM aid you in
identifying poor performance metrics with visual cues.

» System Resource Comparison

Compares environments and deployed binaries among servers in a group.
Useful for investigating issues where one server among a group is behaving
erratically.

At any level of investigation, you are presented with links to the relevant next-step
features. For example, from the Server Availability Detail page, once you identify
a particular problem server, you can look at its resident threads in the Application
Activity Display, look at its J2EE resource use in the System Resources
Overview, or proceed to the System Resource Comparison.

Continuous monitoring: traps

WebSphere Studio Application Monitor lets you monitor your servers
automatically, allowing you to catch a particular behavior or event at the time it
occurs, through Trap & Alert Management.

You can define traps to look for a specific event by name and type (HTTP or
SQL), for a specific application behavior or metric, or for WebSphere
performance metrics that reach or surpass defined thresholds.

Chapter 6. WebSphere Studio Application Monitor 235

WSAM lets you define the actions to take when a trap is triggered, which
includes logging and e-mail. You can define the number of times the trap
condition must be met before WSAM executes the trigger.

Analysis-based methodology
In addition to the “real-time” use, you can define a variety of reports and charts

from the archived data; for example, throughput by application group against time
of day.

Reports are useful both for capacity planning as well as problem determination.

6.4 ITSO configuration

At ITSO, we ran the application monitor on a single AIX machine. The data
collectors were installed on the WSTSRV and WSESRYV server instances on all
three LPARs. We switched on SMF type 120 recording and ran the service
address space in all three LPARs.

Data collectors and service address space

Data Collector Classname Exclude List: filter out sqlj, which is used as part of the
elTSO application

Application monitor

Installed on a single AlX server F50 2-way 322 MHz machine with 1 GB of
memory. This was a little under-powered for our purposes.

We configured the default Sampling Frequency as 1%. Therefore, in normal
operation only one percent of all transactions were logged by the Data Collectors
to the application monitor.

The application monitor was used with the default user, the administrator, which
had Administrator permissions for the product. In production you might well
restrict various users’ powers, but since this does not add to our discussions of
performance monitoring, we adopted the simplest solution.

Two server groups were set up in the monitoring console. The group names were
elTSO Sample Application (for the elTSO server) and Trade2 Application (for the
Trade2 and PRR server).

Monitoring console

The monitoring console is a Web-based client. Therefore, it can run on any
compliant browser. In our test lab, we used IE 6.0 on Windows 2000 as the client

236 Monitoring WebSphere Application Performance on z/OS

workstation. We also did some work using Mozilla Version 6, although the
captured screen shots are all IE for consistency.

Features used
WebSphere Studio Application Monitor core product only. No additional product
add-ons were used.

6.5 Running the examples

Most of the panels seen on the WSAM console are extremely detailed and do not
lend themselves well to reproduction in a book such as this. Therefore, we have
cropped the screen shot images in order to display clearly the information most

relevant to the discussions.

6.5.1 Example 1

In Example 1, a particular user experiences a delay with his transaction, which
normally runs fine for other users. We want to isolate the offending transactions.

Methodology
Our methodology is as follows:
1. Since this is not an in-flight transaction, we start with the Performance

Analysis and Reporting section of WSAM to isolate time periods in which
requests took a long time to execute.

2. We drill down on the offending time intervals by looking at the requests
executed within them, and then drill down further to the underlying method
trace. This provides details we can pass back to the developers for further
analysis.

Procedure

We start with a general search for all requests within the half-hour interval in
which the problem occurred, on a minute-by-minute basis, by performing a
Request Analysis. This is accomplished in our ITSO lab setup as follows:

To search for all requests in the half-hour interval in which the problem occurred,
on a minute-by-minute basis, do the following:

1. Navigate to Performance Management -> Performance Analysis &
Reporting.

This brings up the Performance Analysis and Reporting page.
2. Click Define Report in the left side navigation to create a new report.

Chapter 6. WebSphere Studio Application Monitor 237

238

This brings up the Server and Report Type Selectionpage.

. Enter the following information in the Server and Report Type Selection

section:

— Group: eITSO Sample Application
— Server: A1l Servers
— Report Type: Request Analysis

Click Next>. This brings up the Report Filtering Options page.

. Enter the following information in the Report Filtering Options section:

— Metric: Response Time
— Request Type: ALL
— Request Name: <leave blank>

Click Next>. This brings up the Data Set Parameters page.

. Enter the following information in the indicated sections:

— Start Date: 11/13/02 8:30 PM

— End Date: 11/13/02 9:00 PM

— Contrast Options: None

— Data Grouping: Minute of the Hour

Click Finish. The results of the Trace Report appear in Figure 6-6 on
page 239.

Monitoring WebSphere Application Performance on z/OS

Feport Mame Scenario 1 Run 2
Report Type Responsze Time(ms) Reguest An
Feport Period 111302 3:30 P to 1171302 9:00 P
Data Grouping: MIMNUTE OF HOUR
Sample Sum 54
Server Scope Al Servers on group eITS0 Sample Application
Additional Detail

SPOMSE TIME im . MINUTE OF HOLUR
2.000-
1,500

1.000-

L s)1 it o e N o S e M o W G (o) 15 5 O R i s o e e o o o
] 20

Figure 6-6 Trace Report: Shows the response time trend of requests during the specified period

The graph in Figure 6-6 shows two dramatic spikes in the average response time
for requests. Next, we want to find out more information about the requests in the
most offensive time period.

To find out more information about the requests in the time period with the
highest response time, do the following:

Chapter 6. WebSphere Studio Application Monitor 239

1. Select Application Name in the Additional Detail field of the Report
Properties section (this should be the default selection).

2. Click the bar that has the highest response time.

Figure 6-7 on page 241 shows the resulting decomposition of requests for the
selected period.

240 Monitoring WebSphere Application Performance on z/OS

APPLICATION MAME 5 A JIs PROJECTED CO

ept QI antroller 3186 3 200

ontroller lik 2 200

ntroller 26 ; 100

HustPCiPClnputF orm bt : ! 100
I0rderStatusi0SinputE arm. hirml 3 i 100

[P avmentPAYInputE orm.btml 3 z 300

(O rdent Ol nputF orm. bt 3 : 100

Figure 6-7 Decomposition Report: Shows the Web request composition of a selected minute.

Notice that the projected count is different from the actual count. This means
that the sampling frequency was not 100%.

3. To sort the results by descending response time, click the heading
RESPONSE TIME (ms) twice.

Chapter 6. WebSphere Studio Application Monitor 241

We find that the request for the URI /OrderStatus/0SController was the one
that, on average, took the longest to complete.

4. To see why this was the case, click the /OrderStatus/OSController link.
These results are shown in Figure 6-8.

REPORT PROFPERTIES

Feport Mame Scenario 1 Run 2

Report detail on - MIMUTE OF HOLUR &0

Report decomposed by Application Mame on MIMNUTE OF HOLIRE - 50
Feport Type Response Timelms) Reguest Ana
Repaort Period 11013 Phlto 11513002 8:00 Fhi

Semer Scope A

IDrder
customerl.

1
customerl asthia

Figure 6-8 Request Detail: Shows the individual requests that were captured during the one-minute interval
of highest response time.

5. Once again, click the heading RESPONSE TIME (ms) twice to sort the
requests by descending response time.

We see that one request was dramatically slower than the rest. Furthermore,
this request has different query parameters than the other requests.

242 Monitoring WebSphere Application Performance on z/OS

6. To determine the cause of the slowdown, we drill down on this request by
clicking its name:
/OrderStatus/OSController?customerLastName=MIN&command=manua

The resulting method trace is shown in Figure 6-9.

nfindCustomerByLastMame DatelTime 13 2 8:80:47 P Elapsed Time 20 ms

CHNP.customer
ment. executeciuerny DatelTime Mov 13, 04T i Elapsed Time 28 ms
O CBIVP customer
DatefTime Mow 13, 200 047 Phd Elapsed Time 25 ms [
DatefTime Moy aFh apsed Time s CPUTim
ndByFrima 1y DiatelTime
FROM CBIVE. customer WHERE ¢_id =

heckZonnection DateMime Maow13, 20 55 FPh Elapsed Time

n.makeConnection Date/Time Moy 13, 2002 3:50:55 P Elapsed Time

Figure 6-9 Method Trace: Shows the individual methods executed in the selected request.

This page shows the individual methods executed in our offending request. We
see that both the elapsed time and the CPU time jump dramatically between the
call to the database and the subsequent call to findbyPrimaryKey.

This specific behavior can be taken back to the development organization for
further analysis, so they can determine the cause of the problem and how to
address it.

6.5.2 Example 3

Example 3 is an example of a memory leak. We can use WebSphere Studio
Application Monitor to observe memory usage in real time.

Methodology
Our methodology for identifying memory is to observe server availability metrics
in real time, including JVM Memory use.

Chapter 6. WebSphere Studio Application Monitor 243

Procedure
We observe the JVM Memory use in real time. This is facilitated by setting an

availability threshold for JVM Memory use, which allows WSAM to automatically
highlight cases where use passes the threshold.
To observe the current memory usage, do the following:
1. Navigate to Availability -> Server Availability Detail.
The Application Overview page appears.

2. Click the arrow to the right of the All Servers entry in the Server Tree section
on the left side of the page to view the availability details of all servers.

3. Observe the values in the JVM Memory Usage (mb) column.
The information on the Server Availability Detail page refreshes periodically.
If there is a memory leak, the value of the JVM Memory Usage (mb) column may

fluctuate from page refresh to page refresh. But, on the average, the JVM
Memory Usage value will increase over time.

To aid detection of excessive JVM Memory Usage, configure the Server
Availability Detail to automatically indicate when JVM Memory Usage surpasses
a threshold. This will help you quickly spot applications that are currently using
more memory than others. It is normal to see high memory usage periodically as
the heap fills before each garbage collection, but if high memory usage becomes
increasingly frequent over a sustained period of time, this might suggest the
presence of a memory leak.

To define a threshold for acceptable JVM Memory usage, do the following:
1. Click Configuration in the Refresh Settings section.

The Server Availability Configuration window pops up.
2. In the drop-down next to JVM Memory Usage, select > (greater than).

3. In the field next to the right of the drop-down, enter the threshold for
acceptable JVM Memory usage, in mb. In our case, enter 100.

4. Click Save.
The pop-up window closes.
Once you have set a Server Availability Detail threshold, WSAM automatically

highlights, in yellow, the names of any servers on the Server Availability Detail
page that pass the configured thresholds.

Figure 6-10 shows the Server Availability Detail page in which three servers are
experiencing high JVM Memory usage. If this usage continues or increases, it is
possible that a memory leak exists.

244 Monitoring WebSphere Application Performance on z/OS

SERVER DETAIL

Yolume

Status Flatform

f4.00

Figure 6-10 Server Availability Detail: Shows detail statistics related to server availability, including JVM
Memory Usage.

Follow-up
Once you have found a server with a memory leak, the next step is to locate the
source of the problem.

If the memory leak is confined to a single server out of a server group, one
possible explanation is that the version of the application installed on the problem
server is not up-to-date. WebSphere Studio Application Monitor provides a way
to compare installed binaries among servers in a server group, through the
Software Consistency Check: Installed Binary Comparison.

6.5.3 Example 4

In Example 4, users are complaining that response time is increasing—what
used to take around one second is taking three or more. We know that their

Chapter 6. WebSphere Studio Application Monitor 245

transactions use the Trade2 server, and we know that the problem has been
around for some time, so we have archived a fair amount of data.

Methodology
Our methodology is as follows:

1. Since we have archived data describing this problem, we start with the
Performance Analysis and Reporting section of WSAM to isolate time periods
in which requests took a long time to execute.

2. We drill down on the offending time intervals by looking at the requests
executed within them, and then drill down further to the underlying method
trace.

3. Using the System Resources Overview, look at EJB use, and drill down to
see the underlying method trace of the relevant EJBs.

This provides details we can pass back to the developers for further analysis.

Procedure
We decide to run a Request Analysis report on the Trade2 server. This is done

from the Performance Analysis and Reporting section of WSAM.
To run a Request Analysis on the Trade2 server, do the following:

1. Navigate to Performance Management -> Performance Analysis &
Reporting.

This brings up the Performance Analysis and Reporting page.
2. Click Define Report in the left side navigation to create a new report.
This brings up the Server and Report Type Selection page.

3. Enter the following information in the Server and Report Type Selection
section:

— Group: Trade2 Application
— Server: A1l Servers
— Report Type: Request Analysis

Click Next>. This brings up the Report Filtering Options page.
4. Enter the following information in the Report Filtering Options section:

— Metric: Response Time
— Request Type: ALL
— Request Name: <leave blank>

Click Next>. This brings up the Data Set Parameters page.
5. Enter the following information in the indicated sections:

246 Monitoring WebSphere Application Performance on z/OS

Start Date: 11/13/02 8:30 PM

End Date: 11/13/02 9:00 PM
Contrast Options: None

Data Grouping: Minute of the Hour

Click Finish. The results of the Trend Report appear in Figure 6-11 on

page 247.

RESFOMSE TIME (=) ws. MIMNUTE OF HOUR
Z,.000-
1,500~

1,000-

Figure 6-11 Trend Report

30

RESPOMSE TIME (tms)

24

Chapter 6. WebSphere Studio Application Monitor

247

Our Trend Report shows that, indeed, the response time within the WebSphere
server region is often well over a second. Combined with network delay, this may
very well explain users’ complaints.

We proceed to identify the requests and underlying methods that cause these
glacial response times within the WebSphere server region.

To determine which requests and underlying methods have excessive response
times, do the following:
1. On the Trend Report, click any of the bars with offending response times.

The resulting decomposition of requests for the selected period appears in
Figure 6-12.

248 Monitoring WebSphere Application Performance on z/OS

Feport decamposed by Application Mame on MINUTE OF HOUR @ 3
Feport Type Response Timeims) Request Anal
Feport Period 11720002 7:00 P to 1120002 2:00 P
Cata Intereal Maone

Servar WTSCF L Oh group Trade2 Application

APPLICATION MAME = RESP iE TIME {ms) ACTL PEOJECTED GO

raller 1467 3 300

Figure 6-12 Decomposition report

Our Decomposition Report shows that the sole offending request is for the
/jms/JIMSController.

2. To see a breakdown of the requests that comprise the JMSController servlets,
click the /jms/JMSController link. The results are shown in Figure 6-13.

Chapter 6. WebSphere Studio Application Monitor 249

ST REFORT DETAIL
ect Report Detail disp a breakdoven of the data for the porion ofthe Decomposition Repor

REFPORT FROFPERTIES

Report Mame

Report detail on
Report decomposed by Application Mame on MIMUTE OF HOLR : 36
Report Type Response Timeims) Request Anal
Feport Period 11720002 700 P to 11720002 8:00 P

A on droup Trade2 Application

SERVER

Figure 6-13 JMSController servlet detail

The Request Report Detail report shows three servlet instances of the offending
/jms/JIMSController invocation.

3. To see the method trace of any one of these instances, click one of the
/jms/IMSController links.

The resulting method trace is shown in Figure 6-14 on page 251.

250 Monitoring WebSphere Application Performance on z/OS

DatefTime M ! ed Time 291 ms

DateiTime
Date/Time
DateTime

Date/Time

npletion DatelTime

letion DatelTime

DatelTime Mo

Figure 6-14 JMSController method trace

This method trace shows methods with long response times, including
com/ibm/ws390/tx/TransactionImpl.afterCompletion. Since we know this
method calls CICS, we can pass the problem to the CICS team for investigation.

To be thorough, we also inspect EJB use on the Trade2 servers, which is done
from the System Resources Overview section.
To see the EJB use on the Trade2 servers, do the following:
1. Navigate to Performance Management -> System Resources.
This brings up the System Resources Overview page.

2. Enter the following information in the Choose Server section, on the left side
of the page:

— Group: Trade2 Application
— Server: A11 Servers

The System Resources Overview page refreshes and displays a resource
overview for the Trade2 servers.

3. Click the EJBs link in the left navigation.

This brings up the EJB Summary page for the Trade2 servers, which is shown
in Figure 6-15 on page 252.

Chapter 6. WebSphere Studio Application Monitor 251

APPLICATION SERVER MAME: WTSC

IMTERWAL STARTIEMD:

EJB SUMMARY

AnC Mame

FemotetWwebContainer:EemoteitebCaontainer.jar:Remoteieb Container

5:PRR W/

Figure 6-15 EJB summary

From the EJB Summary page, we see, among the EJBs used by the Trade2
application, an EJB called PRRS: : CICSPRR. jar: : ERWWCTGPC. We know this EJB
calls CICS, so we wish to investigate it further.

4. To see which methods the PRRS::CICSPRR.jar::ERWWNCTGPC EJB calls, click
PRRS: :CICSPRR.jar: :ERWWCTGPC.

This brings up the EJB Method Summary page, which is shown in Figure 6-16
on page 253.

252 Monitoring WebSphere Application Performance on z/OS

EJB METHOD SLIMMARY
The EJB Method Summary reports infarmation far the methods of the

SHAPSHOT INFO

APPLICATION SERVER MAME:

RE!

INTERY TARTIEMD:

EJB METHOD SUMMARY

Invocations
Tirme

1502

Figure 6-16 EJB details

The EJB Method Summary shows that the method priceChangerEJBDriver
(erwwcics.ctqg.pc.PriceChangelnput), which also calls CICS, shows a response

time of over 1.5 seconds.

This level of detail greatly helps the CICS team diagnose the problem.

6.5.4 Example 6

In Example 6, the system runs smoothly with no problems, until one user
complains about very slow response time—around five minutes.

Methodology

There are a variety of approaches we can take using IBM WebSphere Studio
Application Monitor to locate the problem. In all cases, we locate the request and
drill down to get the most specific information possible, including a method trace

Chapter 6. WebSphere Studio Application Monitor 253

of the underlying servlet, EJB, or SQL call. The biggest decision is how to get
started. Our options include the following:

» Run areport using Performance Analysis and Reporting to locate the request.

This path will only work if the user’s request was archived as part of normal
sampling. Since our database sampling rate is 1% (which is a reasonable
figure in a stable production environment), it is unlikely that we will see this
one user’s request in Request Analysis reports. While this may work, we do
not start with this path.

» Increase the Request Sampling Rate to 100% using System Properties, wait
for the user to issue the request, then run a report using Performance
Analysis and Reporting.

This option relies on the user reissuing the request, and has the drawback
that switching the sampling rate to 100% will fill up the database for the sake
of one request. So we do not pursue this path.

» Set an Application Event trap to find the user’s request when it arrives, by
using Trap & Alert Management.

This option also relies on the user issuing the request again. Since we think
the request may be accessible in recent activity, we do not pursue this path
first.

» Look for the user’s request in-flight using Application Activity Display.
» Look at recent resource use using System Resources Overview.

These two final options differ primarily in that the Application Activity Display
panel provides an instantaneous snapshot of the requests being serviced by
WebSphere, while System Resources Overview is a picture of recent activity
taken from the SMF records. We decide to follow the System Resources
Overview path since it provides a broader window into recent activity, and is more
likely to provide a result.

Procedure

We start with the System Resources Overview page and use it to locate recently
used resources (specifically EJBs), but which are used infrequently, since our
problem is not common. We proceed to drill down and generate a method trace
of the offending resources.

To use the System Resources Overview path to determine the method causing
the request to hang, do the following:
1. Navigate to Availability -> Server Availability Detail.

The Server Availability Detail screen appears.

254 Monitoring WebSphere Application Performance on z/OS

2. On the Server Availability Detail screen, in the Server Tree menu, click the
arrow to the right of the eITSO Sample Application server group.

The availability information for the servers in the eITSO Sample Application
server group appears in the Server Detail section, which is shown in
Figure 6-17.

FEFRESH SETTIMGS

Refresh Inter

SERVER DETAIL

Platfiorm

f4.00

100.00

Figure 6-17 Server Availability Detail: Shows detail statistics related to server availability across all regions
in the server instance.

3. To see the System Resource use of servers in the eITSO Sample
Application, click SR next to the appropriate server instance name.

Note: Although SR is selected for an individual server region, the data
supplied is aggregated across all regions in the server instance.

The System Resources Overview appears, which is shown in Figure 6-18 on
page 256.

Chapter 6. WebSphere Studio Application Monitor 255

s the data every 5 rrllrlut_..:- for IJI-:-F.I|-:4§.'.

o SERYER MAME!

SERVLET ACTITY

(MOUSEOVWER BAR FOR DETAIL)

BYTES SEMT TO CLIEMTS

Figure 6-18 System Resources Overview: Shows an Application Server’s resource use, including EJB
coverage. Mousing over the EJB Coverage graph displays the names of the EJBs used.

The System Resources Overview screen shows, among other things, which
EJBs and servlets have been invoked. We suspect that the offending methods
lie in a rarely used EJB.

4. To identify the names of the EJBs represented in the EJB Coverage box,
mouse over each differently colored section of the graph.

Notice that there are some little-used EJBs, which are represented by the
short red bar at the right hand end of the EJB Coverage box. Mousing over
these seldom-used EJB displays their names.

256 Monitoring WebSphere Application Performance on z/OS

5. To investigate these EJBs further, click the EJBs link in the left navigation.

The EJB Summary screen appears, which is shown in Figure 6-19.

EJB SUMMARY

e selected server.

APPLICATION SERVER MAME: WTSCREL

Sun

INTERWAL STARTIEMD: i
han

EJB SUMMARY

Reentrant

Figure 6-19 EJB Summary

Based on the infrequently used EJBs, we have a good idea of which EJBs are
likely to have been invoked during the hanging request. In this case, we look
for the CustomerEntity bean.

6. To see the method summary for this EJB, click the
ERWW::ERWWBMPs.jar::CustomerEntity link.

Chapter 6. WebSphere Studio Application Monitor 257

The EJB Method Summary screen appears, which is shown in Figure 6-20.

EJBE METHOD 2 :
The EJB Method Summarn reparts information for the methods of the selected enterpris

SHAPSHOT IMFO
APPLICATION SERVER MAME:
R IRCE:

INTERVAL STARTIEMD:

EJB METHQD SLIMMARY
method Signature Imvocations
Time

409728

itmerE ntity
getCustomer]di
getCustomerMiddief
getCustomerFirst

netCustomerl asti

Figure 6-20 EJB method summary with bad response

The EJB Method Summary screen shows how much time it took for each
method in the EJB to execute. We see that the method
findCustomerByLastName took nearly seven minutes, and the method
findByPrimaryKey took five minutes.

258 Monitoring WebSphere Application Performance on z/OS

7. To see the details of the execution of findCustomerByLastName, click the
findCustomerByLastName link.

The EJB Method Detail page appears, which is shown in Figure 6-21 on
page 259.

SHOT IMNFO
APPLICATION SERVER MAME:
RESOURCE:
ARTIEMD:

EJB METHOD DETAIL

hlethod Sianature:

ort,shortboolean gt

esponse Time:

Time:

Figure 6-21 EJB Method Detail: Shows statistics about the method’s invocation history and performance

Further investigation shows us that the method findCustomerByLastName is used
only by this user, and there are no other invocations of this method in our

Chapter 6. WebSphere Studio Application Monitor 259

database. A closer look at the method reveals that indexing has been turned off
for the query, which is the cause of the problem.

6.5.5 Example 7

In Example 7, users are not only experiencing delays, but their transactions are
hanging and not returning.

Methodology
Our methodology is as follows:

1. Since we know that there are active transactions in the system, we use
In-Flight Request Search to look at all active requests in the Trade2
Application server group. From there, we drill down by getting a stack trace
of the thread.

2. We consider taking action to cancel the hanging thread.

Procedure
In this case, since there are active transactions in the system, we use In-Flight
Request Search to look at all active requests in the Trade2 Application server

group.

To locate hanging requests in the Trade2 Application server group, do the

following:

1. Navigate to Problem Determination -> In-Flight Request Search.
This brings up the In-Flight Request Search page.

2. On the In-Flight Request Search page, enter the following information in the
SEARCH CRITERIA section:

— Group: Trade2 Application
— Server: A1l Servers
— Search Request: <leave blank>

Click OK. The results of the search are shown in Figure 6-22 on page 261.

260 Monitoring WebSphere Application Performance on z/OS

SEARCH CRITERIA

i [B Tradez Applicstion -
All Servers h

SEARCH RESULTS
Timestamp Blow 11, 2002 11:05: il

Client Reguest Start DaterTirme Thread D T
fmsidmsSController Mow 171, 2002 11:04:27 Al
WTSCPL s ontroller Mo 11, 2002 11:05:01 Ahd

WTSCPLHT N i == dms antroller Mow 11, 2002 11:05:05 Ahd

Figure 6-22 In-Flight Request Search: Shows the requests currently executing in the application server
The results of our in-flight request search show several transactions that have
been resident in the system for varying amounts of time.

3. To look at a particular request in more detail, click the thread id of the oldest
transaction (581568616).

The resulting Request Detail page is shown in Figure 6-23 on page 262.

Chapter 6. WebSphere Studio Application Monitor 261

, method, or
atus.

REQUEST FROPERTIES
Shapshaot Date Mow 11, 2002 Application Server Marme W5

Snapshot Time : Ml Application Server IF Addre 912

Platform CPL % WHilization 17.00% Total Thread Count 1

REQLEST DETAIL
st 18 Accumulated CRLU BEA
Client Request fmsiMSController Idle Time MA

Client Request Stat Date Mow 11, 2002 Thread Type HttpServlet
Client Request Start Time: 11:04:27 Ah Last kKnown Gl lame Mia
Resident Time & TS Last Known hMethod — MIA

Priarity ¢ Thread Status Runnable

Change Priofity REeE = Chanoe Thread Status ey =T

Figure 6-23 Request Detail: Shows detail information on an In-Flight Request

In this Scenario, since we are configured to Monitoring Level 1, there is no
method and CPU information available. However, we can view the Stack
Trace of the running transaction to see what it is currently doing.

4. To view the stack trace of the hanging request, click Stack Trace in the left
side navigation.

262 Monitoring WebSphere Application Performance on z/OS

The results of the stack trace are shown in Figure 6-24.

Click Stack Trace in the MENU on the left side of the page to view the stack
trace of the hanging request. The results of the stack trace are shown in
Figure 6-24.

¢ depth for the methods that have not completed execution. The trace provides the Clas
vel of the stack.

IFERTIES
Snapshot Date Mow 11, 2002 Application Server Mame
shot Time 11:06:11 Ahd Application Server [P Addr

ren CPLU % Lilization 18.00% Total Thread Caount

comibm.mg. serer MO S Method _ MQGET
comibm.mo.senerMzs mMethod MAGET
cormibm.me.h U] Method
com.ibm.mojms.MaaueleReceivar Method

cormibm.mo.jms.h =T Method

carm.ibm.m.jms MG Method

mgstuff. Client hethod
Method

org.apache jas ASe hethod

Figure 6-24 Stack Trace: Shows the stack of a thread executing a Web request

The stack trace shows that the request is executing an
com.ibm.mq.server.MQSESSION_MQget. Viewing the other hanging transactions

Chapter 6. WebSphere Studio Application Monitor 263

shows the same result, which means it is very likely that there is something
unexpected state with one of the queues.

Check the queues to determine the root cause of the problem.

Follow-up

IBM WebSphere Studio Application Monitor gives you the ability to submit a
request to cancel in-flight transactions from the Request Detail screen. This is a
feature that should be used only as a last resort, since cancelling threads may
leave the JVM in an inconsistent state.

6.5.6 Example 8

In Example 8, an administrator wants to understand the work his servers are
doing, since there is a significant increase in the volume of requests.

Methodology

Our methodology is to use Performance Analysis and Reporting to create a
Request Analysis report, and then to drill down to see the nature of the workload
over the entire period under consideration.

Procedure

In this case we create a Request Analysis report that shows workload
decomposition on a minute-by-minute basis.

To determine the composition of requests served by the Trade2 Application
server group, do the following:

1. Navigate to Performance Management -> Performance Analysis &
Reporting.

This brings up the Performance Analysis and Reporting page.
2. Click Define Report in the left navigation.
This brings up the Server and Report Type Selection page.

3. Enter the following information in the Server and Report Type Selection
section:

— Group: Trade2 Application
— Server: A1l Servers
— Report Type: Request Analysis

Click Next>. This brings up the Report Filtering Options page.
4. Enter the following information in the Report Filtering Options section:

— Metric: Throughput per Minute

264 Monitoring WebSphere Application Performance on z/OS

— Request Type: all
— Request Name: <leave blank>

Click Next>. This brings up the Data Set Parameters page.
. Enter the following information in the indicated sections:

Start Date: 9/8/02 12:00 PM

End Date: 9/8/02 12:00 AM
Contrast Options: None

Data Grouping: Minute of the Hour

Click Finish. This brings up the Trend Report, which is shown in Figure 6-25
on page 266.

Chapter 6. WebSphere Studio Application Monitor 265

Report Mame Scenario 8 Run i
Report Type ThroughPut per minute Reguast An:
Report Period — 11/08 200 P 4o 117080 10 P
Data Grouping: MINUTE OF HOUR
Sample Sum 1106

Server Scope All Servers an group Trade2 Application
Additional Detail

THROUGHPLUT PER MIM vs. MINUJTE OF HOUR

20O —

oo ke i e A G e T e i o e i IO T T 0) ey Y 0 L 20 T 4 o I 6
i 20

Figure 6-25 Trend Report: Shows the throughput trend for the specified period of time

The Trend Report shows heavy activity for several minutes, starting at minute 4.
To see the composition of the requests present during this period of time, do the
following:

1. In the Additional Detail field of the Report Properties section, choose
Application Name.

2. Click the bar in minute 4.

266 Monitoring WebSphere Application Performance on z/OS

The resulting Decomposition Report is shown in Figure 6-26.

APPLICATION NAME:
I'websphereSamples) TradeSamplefservlet Tradespp
|ACTUAL COUNT; 32

APPLICATION MAME

MiebSphereSamplesTradeSample

MiebSphereSamplesiTradeSampleMTradeDocs/|efthenu html

MiebSnhereSamplesTradeSampleTradeDocsitopBanner.hitml

Figure 6-26 Decomposition Report: Shows the requests that were executed during the selected period

The Decomposition Report shows that 43% of the workload are requests for the
TradeAppServlet, and approximately 30% of the other requests are for static
content.

Chapter 6. WebSphere Studio Application Monitor 267

It is up to back-office performance analysts to determine whether this workload
composition is expected. Some enterprises require static files to be served
outside of WebSphere, while others do not mind.

6.5.7 Example 9

In Example 9, we see an increase in volume, but no problems.

Methodology

To find volume increases in a broad sense, we use the Application Overview,
which gives an overall view of the server farm. We drill down to view individual
servers’ performance metrics.

Procedure

To find volume increases in the broader level, we use the Application Overview,
which gives an overall view of the server farm, and then look at Server Availability
Detail for the server group that shows increased activity.

To evaluate the overall health of a server farm, do the following:
1. Navigate to Availability > Application Overview.

The Application Overview screen appears, which is shown in Figure 6-27 on
page 269. Mousing over the blue bars displays the number of requests and
average response time for the interval.

Note: Under normal operation, at the base of the blue bars that represent
volume of throughput for the interval, there is an indicator light which indicates
how the response time in that interval compares to the baseline. The indicator
light uses the colors green, yellow and red. These indicators are absent due
to the lack of baseline data.

268 Monitoring WebSphere Application Performance on z/OS

WehSphere® Studio
Application Monitor

AOMIMNISTRATION | AVAILABILITY FRUOB

ning to the

elTS0O Sample Application Yolume Throughput

Select Detail *

Total Molume (last hour)

Figure 6-27 Application overview: Volume has been steadily increasing on the elITSO Sample Application

servers

The Application Overview shows that the volume of the servers in the eITSO
Sample Application group has increased over the last forty minutes.

To monitor the health of the servers in the eITSO Sample Application group,
do the following:

. Select Server Availability Detail from the drop-down under the eITSO Sample

Application group.

The Server Availability Detail page appears, which is shown in Figure 6-28 on
page 270.

Chapter 6. WebSphere Studio Application Monitor 269

REFRESH SETTIMGS
Refresh Interval (sec.) E i

SERVER DETAIL

Yolume ; Tatal

()

Flatfarm

44.00

4.00

14.00

Figure 6-28 Server Availability Detail: Shows server health, which looks okay.

From the Server Availability Detail screen, we do not see any obvious issues. On
the one hand, we can assume that this behavior is good, in that it simply
represents an increase in the site’s popularity.

On the one hand, we can assume that this behavior is good, in that it simply
represents an increase in the site’s popularity.

270 Monitoring WebSphere Application Performance on z/OS

On the other hand, we can repeat what we did in 6.5.6, “Example 8” on page 264
and examine the workload composition both before and after the period of the
increase in activity. A large discrepancy between these two workload
decompositions might indicate that there is something wrong. If the workload
decompositions are similar, then there is likely nothing wrong. In addition, reports
can be created to compare the CPU and response time of the requests that were
captured in the two time periods.

6.5.8 Example 10

In Example 10, we see cases where the response time for a transaction, which
often completes quickly, is slow.

Methodology
Our methodology for problem determination is as follows:

1. Since this is not an in-flight transaction, we start with the Performance
Analysis and Reporting section of WSAM to isolate time periods in which
requests took a long time to execute.

2. We drill down on the offending time intervals by looking at the requests
executed within them, and then drill down further to the underlying method
trace. This provides details we can pass back to the developers for further
analysis.

This has already been exercised in 6.5.1, “Example 1” on page 237. Instead of
presenting the same methodology, we present our methodology for performance
management.

Our methodology for performance management is as follows:

1. Wearing the hat of a performance analyst, we want to understand the method
distribution of the application, to see if there are methods that end up being
called too frequently. We begin by running a Top Methods Used report.

2. Once we identify methods that look suspicious, we run a Method Analysis
report and filter for the suspect method. This tells us which requests call the
method in question.

3. We proceed to run a Request Analysis report, then drill down on the
appropriate request and get a method trace, which we use to help analyze the
problem.

Procedure

Wearing the hat of a performance analyst, we want to understand the method
distribution of the application, to see if there are methods that end up being
called too frequently. We begin by running a Top Methods Used report.

Chapter 6. WebSphere Studio Application Monitor 271

To see if any methods are called too frequently, do the following:

1. Navigate to Performance Management -> Performance Analysis &
Reporting.

This brings up the Performance Analysis and Reporting page.
2. Click Define Report in the left navigation.
This brings up the Server and Report Type Selection page.

3. Enter the following information in the Server and Report Type Selection
section:

— Group: eITSO Sample Application
— Server: A1l Servers
— Report Type: Top Report

Click Next>. This brings up the Report Filtering Options page.
4. Enter the following information in the Report Filtering Options section:

— Metric: Throughput per Minute
— Request Type: all
— Request Name: <leave blank>

Click Next>. This brings up the Report and Date Range Selection page.
5. Enter the following information in the Select Type and Date Range section:

— Top Report: Top Methods Used
— Start Date: 11/13/02 8:00 PM
— End Date: 11/13/02 8:30 AM

Click Finish. This brings up the Top Methods Used report, which is shown in
Figure 6-29 on page 273.

272 Monitoring WebSphere Application Performance on z/OS

TOP METHODS LISED
The Top Metho 5
used. The 3 1t 100 reco

REFPCRT FEOQOFPERTIES
Feport Mame Scenario 10 Fun 2 Beport A
Feport Type Top Methods Used Analysis
Report Feriod 1101300 00 Fhto 1101 3

All Seniers on group eITS0 Sample Application

METHOD MAME
COnbibmidb 2 'sglifidhciDB LIPreparedStatement. executeQuery
COMibmidb2a slifdbcDB2SaLIPreparedStatement execute Update
stockEntityPackage/s ;

itermEntityP ackage

stockEntityFPa
i Pty =Tl
warehouseEntityFP ackar

B3

Figure 6-29 Top Methods Used: Shows the most popular method executions for the selected period

From the Top Methods Used report, we see the distribution of the methods called
by the user’s application. The highest ranking methods are calls to DB2 and calls
related to entity beans, which is expected.

Chapter 6. WebSphere Studio Application Monitor 273

However, there are plenty of calls to a debugOut method. Since it seems
suspicious that debugOut is called frequently enough to appear in the top 10
methods called, we investigate further by performing a Method Analysis report.

To perform a Method Analysis report on throughput per minute on the selected
time frame, do the following:

1. Navigate to Performance Management -> Performance Analysis &
Reporting.

This brings up the Performance Analysis and Reporting page.
2. Click Define Report in the left navigation.
This brings up the Server and Report Type Selection page.

3. Enter the following information in the Server and Report Type Selection
section:

— Group: eITSO Sample Application
— Server: A1l Servers
— Report Type: Method Analysis

Click Next>. This brings up the Report Filtering Options page.
4. Enter the following information in the Report Filtering Options section:

Metric: Throughput per Minute
Method: debugOut
Request Type: all
Request Name: <leave blank>

Click Next>. This brings up the Data Set Parameters page.
5. Enter the following information among the several sections:

— Start Date: 9/13/02 8:00 PM

— End Date: 9/13/02 8:30 PM

— Contrast Options: None

— Data Grouping: Minute of the Hour

Click Finish. This brings up the Trend Report.
To see the composition of the requests present during any particular period of
time, do the following:

1. In the Additional Detail field of the Report Properties section, choose
Application Name.

2. Click on any of the bars on the bar chart in the Trend Report.

This brings up the resulting Decomposition Report, which is shown in
Figure 6-30 on page 275.

274 Monitoring WebSphere Application Performance on z/OS

Feport decomposed by Application Mame an MIMUTE OF HOLUR 14
Repod Type ThroughPut per minute Method Analysis
Report Period 1171302 8:00 P to 11513702 8:30 PM
Data Interval Mone

Server Scope All Servers on group eITS0 Sample Application

APPLICATION MAME = THROWGHPUT PER bk ACTUAL COUNT FEOJECTED CO

IMewOrdentOContioller BEEOO.00 554 REROO

iJustPCIPCController 1400.00 14 1400

IPaymentPAYCantroller 11800.00 1149 11300

Figure 6-30 Decomposition Report: Gives you the distribution of client requests for the time period

The Decomposition Report shows that most requests containing the debugOut
call are handled by the /NewOrder/NOController URI.

Chapter 6. WebSphere Studio Application Monitor 275

Therefore, we want to view the method trace of the URI. To do this, we create a
Request Analysis report on throughput per minute of a selected time frame.

To view the method trace of a request on a minute-by-minute basis, do the
following:

1.

Navigate to Performance Management -> Performance Analysis &
Reporting.

This brings up the Performance Analysis and Reporting page.
Click Define Report in the left navigation.
This brings up the Server and Report Type Selection page.

Enter the following information in the Server and Report Type Selection
section:

— Group: eITSO Sample Application
— Server: A1l Servers
— Report Type: Request Analysis

Click Next>. This brings up the Report Filtering Options page.
Enter the following information in the Report Filtering Options section:

— Metric: Throughput per Minute
— Request Type: all
— Request Name: <leave blank>

Click Next>. This brings up the Data Set Parameters page.
Enter the following information in the indicated sections:

Start Date: 9/13/02 8:00 PM

End Date: 9/13/02 8:30 PM
Contrast Options: None

Data Grouping: Minute of the Hour

Click Finish. This brings up the Trend Report.

From here, we can drill down to see the composition of requests for any chosen
time period, as follows:

1.

In the Additional Detail field of the Report Properties section, choose
Request Type.

Click on any one of the bars.

This brings up the View Request Detail page.

On the View Request Detail page, click any one of the links.

This brings up the View Method Trace, which is shown in Figure 6-31.

276 Monitoring WebSphere Application Performance on z/OS

Entry neworder! P ackan e de iohBean.getHome DatelTime Mow 1
Entry i sefRWWHBase debunOut Date/Time Mow 13, 2002 81419 P
BugCut DatefTime MNow 13, 2 4:19 Pl
DatelTime hov 13, 2002 8:14:19 P
hugOut DatefTime Moy 1419 P
e debugout DateTime: Moy 13, 2002 8:14:19 FM
e/l Base debugOut DatefTime Mow 13, 2002 8:14:15 P
e debugCut DateiTime Mow 13, 2002 314159 P
DatelTime Moy 4:19 Phd
s dehugOut DatefTime Moy 419 P
.debugOut DaterTime MWow 13,] 1 14:19 P
sefiRvnWBase debugOut DateiTime Mow 13, 2002 3:14:15 P

bugiCut DatelfTime Boy i 4:19 Phd

seflRVYWBase debugOut DatefTime: Mow 13, 2002 3:14:158 P

.dehugot DatefTime Mo : 415 P
se.debugCot CratelTime Koy 13, 20
bt DatefTime Moy 31419 FM
1 debugout DatefTime. Kov 13, 2002 8:14:15 P

eIV BE b Ot DatelTime Moy 13, 2002 8:14:19 P

Flgure 6- 31 Method Trace Shows numerous calls to the debugOut method probab/y more than necessary

The View Method Trace report shows that the method debugOut is called a lot,
and is a likely candidate for causing performance problems if the application is
not configured correctly.

Chapter 6. WebSphere Studio Application Monitor 277

278 Monitoring WebSphere Application Performance on z/OS

Java and J2EE details

This appendix provides additional details on the way Java and J2EE applications
behave. Primarily for the benefit of those not familiar with the Java world, it
expands on the concepts introduced in “The WebSphere programming model” on
page 7.

© Copyright IBM Corp. 2003. All rights reserved. 279

A.1 Java class loading

Java loads execution code in a lazy manner. As a Java application executes, it
encounters references to classes and methods (because, fundamentally, all code
exists within methods and methods are grouped into classes; all other constructs
are primarily for packaging purposes). If the class containing the referenced
method is already available, that code is executed. However, if the referenced
class is not available, Java will use a class loader to locate the referenced class
into memory and make it available. Java will then execute the referenced method.
This algorithm ensures that as long as a class is available, it will only be loaded
once.

WebSphere has multiple class loaders to load various pieces of itself, extensions,
and application code. Each of these class loaders has a search policy, known as
a class path, to locate classes. A class path is a list of JAR files to be searched in
some order until the referenced class is found. Once a class loader finds the
referenced class, it will load it. The class loader makes no attempt to discern
multiple, identically named classes on the class path. Although there is no
performance impact to this search behavior, it can introduce subtle bugs in the
function of an application if multiple copies of the identically named classes are
on a class path.

A.2 Java runtime execution

As mentioned in 1.2.1, “Java overview” on page 7, Java classes are not stored as
object code in the sense that the hardware understands it. They are stored as
byte codes to be interpreted by the JVM.

In order to achieve good runtime performance, the JVM employs an in-memory
compiler that converts Java byte-code into object code at application run time.
This technique is known as just-in-time (JIT) compilation, and can have
performance benefits over traditional, static compilation. JIT compilers are
capable of analyzing the runtime execution of a set of code, and they employ
optimizations based on information unavailable to static compilers.

One common optimization is called method inlining. As an example of this, the
JIT compiler notices that method A invoked method B often; instead of creating
object code to perform a subroutine call, the JIT compiler produces object code
that includes method B in the same execution path as method A.

The JVM has multiple runtime options. The JIT compiler can be disabled, but this
is normally not done in production environments because of the dramatic
decrease in performance. The JVM also has a runtime debugging mode known
as Java Platform Debugger Architecture (JPDA). This allows a debugger to

280 Monitoring WebSphere Application Performance on z/OS

remotely connect to a running JVM and perform development debugging tasks.
This is rarely used in production, although it can be helpful. Be aware that using
JPDA can force the JVM to disable the JIT compiler.

Another runtime option is the Java Virtual Machine Profiler Interface (JVMPI).
JVMPI is intended for development-time profiling of an application, although it is
sometimes used in production to gather runtime performance metrics. JVMPI
does not disable the JIT compiler, although the use of certain JVMPI features
(such as method execution timing and lock contention monitoring) can force the
JIT compiler not to optimize certain code paths that it would otherwise. In
particular, using JVMPI can prevent the JIT compiler from inlining some methods.
The performance impact of JVMPI can vary widely between versions of JVMs
and Java applications.

A.3 Java memory and garbage collection

Like many other languages, Java provides a facility for allocating memory on a
heap. In fact, unlike some other languages, the Java programming model
encourages most memory allocations to be on the heap. In order to make use of
a Java class (and, consequently, the class's methods), that class must first be
instantiated. An instantiated class is known as an object. In Java, all object
instantiations are done through heap allocations. Unlike C++, Java objects
cannot be instantiated on the stack. In general, stack memory allocation is much
faster than heap allocation, but modern JVMs, particularly the IBM JVMs,
recognize Java's inherent need for fast heap allocation and heavily optimize the
internal layouts of the heap and memory allocation structures to achieve very
good performance.

To facilitate some of its heap allocation optimizations, the JVM will request a
large block of memory from z/OS at startup. After this initial request, the JVM
does not request additional storage from z/OS for heap memory. The JVM
allocates memory from this block to the application as required. The initial
amount of memory that the JVM requests from z/OS is called the maximum heap
size and set by JVM_HEAPSIZE in the Current.env file.

The normal life cycle of a memory block from the Java heap is:

1. Allocate a block of memory and create an explicit Java reference to that block.
2. Using the explicit Java reference, perform operations on that block of memory.
3. Remove all references to that memory.
4

. De-allocate the unreferenced block of memory and return it to the available
heap.

Appendix A. Java and J2EE details 281

The first three stages of the memory block life cycle are explicit within the Java
application code. At step three, the allocated memory block is referred to as
“garbage” because, without any references to the memory block, the application
can no longer use that memory block. Step four occurs automatically through a
JVM internal component called the “garbage collector”. At periodic points, the
garbage collector will collect and return the memory blocks to the pool of
available heap memory. Also, during the course of using and garbage collecting
memory, the heap can become fragmented. The garbage collector will
occasionally compact the heap in order to provide better performance for future
memory allocations.

There are algorithms in the garbage collector which will attempt to only use the
portion of the JVM heap that is really needed.

If the minimum heap size is set to something less than the maximum heap size,
the JVM will attempt to only use the minimum heap size until too much of this
subset of the heap is filled with live objects. Additional segments of the Java
heap will be used as needed until the maximum heap size is reached.The
memory requirements may look like Figure A-1.

Max heapsize

Downward Slopes
Indicate Garbage
Collections

Internally allocated Heap

Time

Figure A-1 JVM allocation with Min less than Max heapsize

Monitoring WebSphere Application Performance on z/OS

However, on z/OS we have found that the best performance is generally achieved
by setting the minimum heap size to the same value as the maximum heap size.
This reduces the overhead of garbage collection in general, and it ensures that
the full heap is exploited, often allowing more time between garbage collections
and thereby reducing GC overhead. The memory requirements may look like
Figure A-2.

Min = Max heapsize

Downward Slopes
Indicate Garbage
Collections

Internally allocated Heap

Time

Figure A-2 JVM allocation with Min equal Max heapsize

In the WebSphere 4.01 environment on z/OS, Workload Manager will start and
stop server regions as needed to meet client demand. Because Workload
Manager is aware of the availability of real storage and other system resources,
this z/OS system component is able to factor system resource information into
the decision whether or not to start an additional server region. This is a much
better way to manage real storage consumption than trying to get the JVM to
only use the heap storage it really needs.

Activity of the garbage collector can be monitored using the verbose GC option.
Running native Java on z/OS, verbose GC data collection can be requested by
using the option -verbose:gc. Under WebSphere 4.01 for z/OS, this option can
be enabled by adding the following option to your current.env file.

JVM_ENABLE_VERBOSE_GC=1

Appendix A. Java and J2EE details 283

For more information about garbage collection on z/OS, go to the Web site for
Java on z/OS:

http://www-1.ibm.com/servers/eserver/zseries/software/java/
Look for Garbage Collection under Hints and Tips.

For more information on Java memory performance and the garbage collector in
general, see:

http://www-106.1ibm.com/developerworks/1ibrary/i-garbagel
http://www-106.1ibm.com/developerworks/library/j-berry.index.html
http://www-1.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100292
http://www-1.ibm.com/servers/eserver/zseries/software/java/gcn2_faq.html
http://www-1.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TD100748

Memory leaks

If a Java application repeatedly allocates memory that cannot be collected by the
garbage collector, eventually the JVM will not be able to free enough heap
memory through garbage collection to satisfy a request to instantiate an object in
the heap. At this point, the JVM is in an out-of-memory condition and the JVM will
terminate. Even with a very large heap, you can get an out of memory condition
if your application has a memory leak.

A memory leak occurs when an application does not remove references to
objects in the heap when it should. For example, an application might put
pointers to objects in a hashtable. If these pointers are not cleaned up correctly
when the objects are no longer needed, this could result in a memory leak.
Since the garbage collector still sees references to these old objects, they will not
be cleaned up, even though the application no longer needs them.

A verbose GC trace will give a clear indication whether or not you have a memory
leak. It does this by showing the free space after each GC. If the free space after
each GC declines over time, a memory leak is likely.

284 Monitoring WebSphere Application Performance on z/OS

http://www-1.ibm.com/servers/eserver/zseries/software/java/
http://www-106.ibm.com/developerworks/library/i-garbage1
http://www-106.ibm.com/developerworks/library/j-berry.index.html
http://www-1.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100292
http://www-1.ibm.com/servers/eserver/zseries/software/java/gcn2_faq.html
http://www-1.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TD100748

140

120

100

80 free %
GCfreed
|

freespace

Free %

60

GC freed - freespace

40

20

Time

Figure A-3 Decline in free space over time

Managing memory leaks in production

Eventually, an application with a memory leak will crash the entire server region
and take down all of the applications hosted with that JVM. At some point before
the server region crashes, response times for all of its applications will increase
dramatically because the garbage collector is spending more and more time
performing its function. The time at which the server region becomes unusable is
generally not predictable nor is the time at which it will crash predictable. In
general, knowing either of these times requires knowing the load on the system,
the available memory in the JVM, the exact nature of the memory leak, and the
rate at which the leak occurs.

In production, the only option to manage a memory leak is to recycle the entire
server region in a controlled manner to minimize the impact on users. In cases
where the server region hosts many different applications, it is very helpful to
isolate the memory leak to a particular application and separate that application
into its own server region. Then, with WebSphere 4.01 for z/OS, you can set the
Server Recycling Interval to the number of transactions which should be
processed before a server region is recycled. When the server region is
recycled, a new server region will start, new work will go to that new server
region, and the old server region will terminate after completing all the
transactions that have already started.

Appendix A. Java and J2EE details 285

A.4 J2EE application flow

According to the J2EE specification, code that exists in one container cannot
directly reference code that exists in another container. In most J2EE
applications, this means that servlets and JSPs cannot directly invoke the
necessary session beans. Further, according to the specification, no one EJB
can directly reference another EJB. This means that session beans cannot
directly invoke the necessary entity beans. All references between containers
and between EJBs must pass through proxies. These proxies allow transparent
remote invocation of services, and also allow WebSphere to track transaction
contexts.

To obtain a proxy, the application code must request a resource from
WebSphere’s JNDI server. If the JNDI server is aware of the resource, it sends a
proxy for that resource to the requesting code. If it is not aware of the resource,
the requesting code gets an exception.

Figure A-4 on page 286 contains a diagram of this particular application flow.

WebSphere Server Region

Web Container EJB Container
Session
Bean
Proxy

4 6 o<
T © m O
& a2
a 7 8 S

Entity

Bean

2\ /5

JNDI Server

Figure A-4 Use of JNDI and proxies

This is what should happen:

286 Monitoring WebSphere Application Performance on z/OS

1. The Request Dispatcher sends the HTTP request to a particular servlet or
JSP.

2. The servlet or JSP requests a Session Bean from the JNDI Server. The JNDI
Server responds with the name of a proxy.

3. The servlet or JSP makes a service request of the Session Bean proxy.
4. The proxy forwards the request to the Session Bean.

5. The Session Bean requests an Entity Bean from the JNDI Server. The JNDI
Server responds with the name of a proxy.

6. The Session Bean makes a service request of the Entity Bean proxy.
7. The proxy forwards the request to the Entity Bean.

8. The Entity Bean makes the appropriate request to the appropriate JCA
connector for a back-end resource.

One of the primary reasons for JNDI and the use of proxies is to enable
distributed transaction management. For example, if the session beans were
deployed to a different address space than the servlets and JSPs, the proxy
mechanism would automatically forward the request as a Remote Method
Invocation (RMI) request by the server hosting the appropriate EJB container.

Most applications are deployed with the Web container that hosts all of the
servlets and JSPs in the same address space as the EJB container that hosts all
of the session and entity beans. Therefore, WebSphere provides an option,
NoLocalCopies, to instruct the proxies to send requests directly to the appropriate
resource instead of through RMI and (perhaps) the network. The Nolocalcopies
option allows you to pass objects by reference rather than by value. It helps make
local calls faster, and remote calls are still possible when the option is enabled. In
many applications that adhere to the J2EE specification, this gives a
performance advantage.

Even when the Web container and EJB container are local to the same address
space, the application must look up resources using JNDI and use proxies in
order to be in compliance with the J2EE specification. While it is possible to use a
cache to avoid many JNDI lookups, the use of proxies can introduce undesirable
overhead.

Therefore, many applications are not J2EE-compliant and do not use either
Session or Entity beans. Instead, they will deploy all code to the Web container.
The servlets and JSPs will make direct references to custom code that invokes
JCA or JDBC to access back-end systems; see Figure A-5 on page 288.

Appendix A. Java and J2EE details 287

WebSphere Server Region

Web Container

7 2
g O <
oc [™ m O
o Q [a T
o é’ 2 5
JSP or Custom
Servlet Code

Figure A-5 Use of custom code without JNDI or proxies

A.5 J2EE application structure

An application that follows the J2EE specification will have an internal structure
similar to the one shown in Figure A-6 on page 289.

288 Monitoring WebSphere Application Performance on z/OS

WebSphere Server Region
. < CICS
Session Beans [©]
=
- Servlets
= and JSPs Entity Beans
a2
[S] 2
Work o T o : -
QO Q m
o @ a |
(=]
‘ . l DBZT
<
O IMS
Web EJB -
Container Container

Figure A-6 Quintessential WebSphere application structure

An HTTP request, typically originating from a user’s browser, is passed to
WebSphere by means (described in “Putting it together: a typical customer
installation” on page 16) controlled by Workload Manager (WLM). WebSphere
evaluates the HTTP request and dispatches it to the appropriate servlet or JSP.
The servlet or JSP then repackages the request in such a way that it can easily
be processed by the rest of the application code, and sends it to a session bean
for processing. The logic for a particular transaction is contained within a Session
Bean. Any back-end data access is handled through entity beans using JCA or
JDBC connectors to obtain data from these back-end stores.

Neither WebSphere nor Java enforces any particular internal structure on an
application, however. Many applications choose to follow only a portion of the
J2EE specification and may use custom code that does not follow any particular
specification. In particular, it is common for applications not to use Entity Beans
or Session Beans. The internal structure of these applications is described in
Figure A-7 on page 290.

Appendix A. Java and J2EE details 289

WebSphere Server Region
<
‘ < cics
154
Work & ‘§ Q , -
I é’ T Custom Code 8 z
- I DB2
Servlets <
or JSPs, ‘ g IMS
Web
Container

Figure A-7 Custom WebSphere application structure

The HTTP request is still passed to the WebSphere server region based on WLM
advice and is dispatched to a server or JSP through the Request Dispatcher. The
servlet or JSP then invokes custom code that performs the transaction logic
interacting directly with back-end resources via the necessary JCA or JDBC
connectors.

290 Monitoring WebSphere Application Performance on z/OS

Configuration files

In this appendix we provide some of the definitions we used in our performance
tests. We have included only those definitions most relevant to the topics we
describe in the body of the book.

© Copyright IBM Corp. 2003. All rights reserved. 291

B.1 HTTP Server definitions

Example B-1 shows the principal changes we made to the HTTP server
configuration (httpd.conf) on the Windows 2000 server. The plugin was already
installed, so we just had to get the HTTP server to listen to all the ports that we
were using to distinguish between the eight application servers.

Example: B-1 HTTP server configuration extract

Listen 4040
Listen 5050
Listen 6060
Listen 7070
Listen 4050
Listen 5060
Listen 6070
Listen 7080

The actual configuration was done using the Administration Server GUI. We
selected Base Settings, Advanced properties, and then Specify Additional
Ports and IP Addresses.

The plugin configuration file is shown in Example B-2 in its entirety:

Example: B-2 HTTP server plugin definitions

<Config>

<!-- The LoglLevel controls the amount of information that gets written to
the plugin log file. Possible values are Error, Warn, and Trace. -->

<Log Name="C:/WebSphere/AppServer/logs/native.log" LogLevel="Error"/>

<!-- URI groups provide a mechanism of grouping URIs together. Only
the context root of a web application needs to be specified unless
you want to restrict the request URIs that get passed to the
application

server. -->
<!-- In this game we distribute by virtual host name only, so all URIs are
equal. -->

<UriGroup Name="default_host URIs">
<Uri Name="/WebSphereSamples/*"/>
<Uri Name="/*"/>

</UriGroup>

<!-- Virtual host groups provide a mechanism of grouping virtual hosts
together. -->

292 Monitoring WebSphere Application Performance on z/OS

<!-- In this game we have four WAS groups on the z/0S sysplex, hence four
virtual host groups. -->

<VirtualHostGroup Name="Franck">
<VirtualHost Name="*:7070"/>
</VirtualHostGroup>

<VirtualHostGroup Name="FranckTest">
<VirtualHost Name="*:7080"/>
</VirtualHostGroup>

<VirtualHostGroup Name="CandleTrade">
<VirtualHost Name="*:6060"/>
</VirtualHostGroup>

<VirtualHostGroup Name="WilyTrade">
<VirtualHost Name="*:5050"/>
</VirtualHostGroup>

<VirtualHostGroup Name="CyaneaTrade">
<VirtualHost Name="*:4040"/>
</VirtualHostGroup>

<VirtualHostGroup Name="CandleeRWW">
<VirtualHost Name="+*:6070"/>
</VirtualHostGroup>

<VirtualHostGroup Name="WilyeRWW">
<VirtualHost Name="*:5060"/>
</VirtualHostGroup>

<VirtualHostGroup Name="CyaneaeRWW">
<VirtualHost Name="+*:4050"/>
</VirtualHostGroup>
<!-- Server groups provide a mechanism of grouping servers together. -->
<!-- Here we have one Server Group per WAS group. Each group has the same
address but a unique port.
For each Group, the Cluster address is the distributed VIPA and the
Server addresses are the static VIPAs. -->
<ServerGroup Name="FMISrvr'>
<ClusterAddress name="haplexl">
<Transport hostname="202.5.10.11" port="7070" protocol="http"/>

</ClusterAddress>

<Server CloneID="FMISRV.FMISRVA" Name="SC48">

Appendix B. Configuration files 293

<Transport Hostname="202.5.10.4" Port="7070" Protocol="http"/>
</Server>

<Server CloneID="FMISRV.FMISRVB" Name="SC50">
<Transport Hostname="202.5.10.6" Port="7070" Protocol="http"/>
</Server>

<Server CloneID="FMISRV.FMISRVC" Name="SC52">
<Transport Hostname="202.5.10.7" Port="7070" Protocol="http"/>
</Server>

</ServerGroup>
<ServerGroup Name="FMXSrvr'>

<ClusterAddress name="haplexl">
<Transport hostname="202.5.10.12" port="7080" protocol="http"/>
</ClusterAddress>

<Server CloneID="FMESRV.FMESRVA" Name="SC48">
<Transport Hostname="202.5.10.4" Port="7080" Protocol="http"/>
</Server>

<Server CloneID="FMESRV.FMESRVB" Name="SC50">
<Transport Hostname="202.5.10.6" Port="7080" Protocol="http"/>
</Server>

<Server CloneID="FMESRV.FMESRVC" Name="SC52">
<Transport Hostname="202.5.10.7" Port="7080" Protocol="http"/>
</Server>

</ServerGroup>
<ServerGroup Name="OMESrvr'>
<ClusterAddress name="haplexl">
<Transport hostname="202.5.10.11" port="6060" protocol="http"/>
</ClusterAddress>
<Server CloneID="OMTSRV.OMTSRVA" Name="SC48">
<Transport Hostname="202.5.10.4" Port="6060" Protocol="http"/>
</Server>
<Server CloneID="OMTSRV.OMTSRVB" Name="SC50">
<Transport Hostname="202.5.10.6" Port="6060" Protocol="http"/>

</Server>

<Server CloneID="OMTSRV.OMTSRVC" Name="SC52">
<Transport Hostname="202.5.10.7" Port="6060" Protocol="http"/>

294 Monitoring WebSphere Application Performance on z/OS

</Server>
</ServerGroup>
<ServerGroup Name="INTSrvr'>

<ClusterAddress name="haplexl">
<Transport hostname="202.5.10.11" port="5050" protocol="http"/>
</ClusterAddress>

<Server CloneID="INTSRV.INTSRVA" Name="SC48">
<Transport Hostname="202.5.10.4" Port="5050" Protocol="http"/>
</Server>

<Server CloneID="INTSRV.INTSRVB" Name="SC50">
<Transport Hostname="202.5.10.6" Port="5050" Protocol="http"/>
</Server>

<Server CloneID="INTSRV.INTSRVC" Name="SC52">
<Transport Hostname="202.5.10.7" Port="5050" Protocol="http"/>
</Server>

</ServerGroup>
<ServerGroup Name="WSMSrvr'>
<ClusterAddress name="haplexl">
<Transport hostname="202.5.10.11" port="4040" protocol="http"/>
</ClusterAddress>
<Server CloneID="WSTSRV.WSTSRVA" Name="SC48">
<Transport Hostname="202.5.10.4" Port="4040" Protocol="http"/>
</Server>
<Server CloneID="WSTSRV.WSTSRVB" Name="SC50">
<Transport Hostname="202.5.10.6" Port="4040" Protocol="http"/>
</Server>
<Server CloneID="WSTSRV.WSTSRVC" Name="SC52">
<Transport Hostname="202.5.10.7" Port="4040" Protocol="http"/>
</Server>
</ServerGroup>
<ServerGroup Name="OMXSrvr'>
<ClusterAddress name="haplexl">

<Transport hostname="202.5.10.12" port="6070" protocol="http"/>
</ClusterAddress>

Appendix B. Configuration files 295

<Server CloneID="OMESRV.OMESRVA" Name="SC48">
<Transport Hostname="202.5.10.4" Port="6070" Protocol="http"/>
</Server>

<Server CloneID="OMESRV.OMESRVB" Name="SC50">
<Transport Hostname="202.5.10.6" Port="6070" Protocol="http"/>
</Server>

<Server CloneID="OMESRV.OMESRVC" Name="SC52">
<Transport Hostname="202.5.10.7" Port="6070" Protocol="http"/>
</Server>

</ServerGroup>
<ServerGroup Name="INXSrvr'>

<ClusterAddress name="haplexl">
<Transport hostname="202.5.10.12" port="5060" protocol="http"/>
</ClusterAddress>

<Server CloneID="INESRV.INESRVA" Name="SC48">
<Transport Hostname="202.5.10.4" Port="5060" Protocol="http"/>
</Server>

<Server CloneID="INESRV.INESRVB" Name="SC50">
<Transport Hostname="202.5.10.6" Port="5060" Protocol="http"/>
</Server>

<Server CloneID="INESRV.INESRVC" Name="SC52">
<Transport Hostname="202.5.10.7" Port="5060" Protocol="http"/>
</Server>

</ServerGroup>
<ServerGroup Name="WSXSrvr'>
<ClusterAddress name="haplexl">
<Transport hostname="202.5.10.12" port="4050" protocol="http"/>
</ClusterAddress>
<Server CloneID="WSESRV.WSESRVA" Name="SC48">
<Transport Hostname="202.5.10.4" Port="4050" Protocol="http"/>
</Server>
<Server CloneID="WSESRV.WSESRVB" Name="SC50">

<Transport Hostname="202.5.10.6" Port="4050" Protocol="http"/>
</Server>

296 Monitoring WebSphere Application Performance on z/OS

<Server CloneID="WSESRV.WSESRVC" Name="SC52">
<Transport Hostname="202.5.10.7" Port="4050" Protocol="http"/>
</Server>

</ServerGroup>
<!-- A route ties together each of the above components. -->

<Route ServerGroup="FMISrvr" UriGroup="default_host_URIs"
VirtualHostGroup="Franck"/>

<Route ServerGroup="FMXSrvr" UriGroup="default_host_URIs"
VirtualHostGroup="FranckTest"/>

<Route ServerGroup="INTSrvr" UriGroup="default_host_URIs"
VirtualHostGroup="WilyTrade"/>

<Route ServerGroup="OMESrvr" UriGroup="default_host_URIs"
VirtualHostGroup="CandleTrade"/>

<Route ServerGroup="WSMSrvr" UriGroup="default_host_URIs"
VirtualHostGroup="CyaneaTrade"/>

<Route ServerGroup="INXSrvr" UriGroup="default_host_URIs"
VirtualHostGroup="WilyeRWW"/>

<Route ServerGroup="OMXSrvr" UriGroup="default_host_URIs"
VirtualHostGroup="CandleeRWW" />

<Route ServerGroup="WSXSrvr" UriGroup="default_host_URIs"
VirtualHostGroup="CyaneaeRWW" />

</Config>

When the plugin receives an HTTP request for consideration, it goes through its
Route statements trying to match the input URL with a target Server Group. The
input is identified in one of two ways:

1. From the URI part of the URL, if there is a match with a URI definition. In our
case we inserted the wildcard definition */* to make sure that all URIs were
accepted.

2. From the host part of the URL, if there is a match with a Virtual Host
definition. We defined a virtual host for each of the eight port numbers in
which we were interested.

Once a server group has been identified from the port number, the plugin has
one more choice to make. It checks the incoming request for the JSESSIONID
keyword in any attached cookie:

» If there is no such keyword, then there is no affinity with any previous HTTP
request. The plugin sends the request to the IP address and port defined in
the ClusterAddress statement.

Appendix B. Configuration files 297

» If there is such a keyword and it matches one of the ClonelDs in the Server
statements, then there is an affinity with the server instance of that name. The
plugin sends the request to the IP address and port defined in the appropriate
Server statement.

We defined our cluster addresses to be the distributed VIPAs in the sysplex, and
our individual server addresses to be the static VIPAs in the appropriate LPARs.
We had to use two distributed VIPAs because of the (soon to be fixed) restriction
that each distributed VIPA can be associated with no more than four ports.

B.2 z/OS TCP/IP definitions

Example B-3 is part of the TCP/IP profile in the “test” stack on SC48 (in other
words, the stack connected to our test network).

Example: B-3 SC48 TCP/IP profile

IPCONFIG DATAGRAMFWD VARSUBNETTING SYSPLEXROUTING
DYNAMICXCF 192.168.80.4 255.255.255.0 4

VIPADYNAMIC
VIPADEFINE MOVE IMMEDIATE 255.255.255.0 202
VIPADEFINE MOVE IMMEDIATE 255.255.255.0 m
VIPADISTRIBUTE DEFINE 202.5.10.10 PORT 900~5555 808671389
DESTIP 192.168.80.4 192.168-86~ 271686780~
VIPADISTRIBUTE DEFINEC02.5. 10 11 PORT 4040 5050 6060 7070
DESTIP 192.168.80.4 192. :
VIPADISTRIBUTE DEFINE¢Z02.5.10.12 PORT 4050 5060 6070 7080
80

DESTIP 192.168.80.4 1927168-86+6
ENDVIPADYNAMIC

DEVICE SVIPA VIRTUAL 0
LINK LVIPA VIRTUAL 0 SVIPA

HOME

6~ 0SA2100LNK
202.5.10.4 LVIPA

Note the relationship between the addresses defined in VIPADEFINE and
VIPADISTRIBUTE, the ports defined in VIPADISTRIBUTE, and the
ClusterAddress statements in Example B-2 on page 292. A TCP connection
request received on a matching address/port pair will be distributed to the stacks
identified in the DESTIP keyword in the same statement.

298 Monitoring WebSphere Application Performance on z/OS

Note also the correspondence between the static VIPA address 202.5.10.4 and
the addresses for the xxxSRVA server instances in Example B-2 on page 292.
The instances running on SC48 all have the instance name xxxSRV.xxxSRVA.

SC48 is the primary distributing stack. On SC50 and SC52, our VIPADYNAMIC
block contained no VIPADEFINE or VIPADISTRIBUTE statements for the two
addresses. It had only VIPABACKUP statements, as SC50’s example in
Example B-4 shows.

Example: B-4 SC50 TCP/IP profile

IPCONFIG DATAGRAMFWD VARSUBNETTING SYSPLEXROUTING
DYNAMICXCF 192.168.80.6 255.255.255.0 4

VIPADYNAMIC

VIPABACKUP 80 202.5.10.11
VIPABACKUP 100 202.5.10.12
ENDVIPADYNAMIC

DEVICE SVIPA VIRTUAL 0
LINK LVIPA VIRTUAL 0 SVIPA
HOME

10.1.6.3 0SAZ2100LNK
202.5.10.6 LVIPA

Appendix B. Configuration files 299

300 Monitoring WebSphere Application Performance on z/OS

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks

For information on ordering these publications, see “How to get IBM Redbooks”
on page 302.

>

>

>

Enabling High Availability e-Business on zSeries, SG24-6850
WebSphere for z/0S V4 Problem Determination, SG24-6880

DB2 Performance Monitor for z/OS, SG24-6867

IMS Version 7 Performance Monitoring and Tuning Update, SG24-6406
IBM Tools: CICS Performance Analyzer V1.2, SG24-6882

CICS Transaction Gateway V5 The WebSphere Connector for CICS,
SG24-6133

Other resources

These publications are also relevant as further information sources:

>

WebSphere Application Server V4.0.1 for z/0S and OS/390: Installation and
Customization, GA22-7834

WebSphere Application Server V4.0.1 for z/0S and 0S/390: Operations and
Administration, SA22-7835

WebSphere Application Server V4.0.1 for z/0S and OS/390: Assembling
J2EE Applications, SA22-7836

System Management User Interface, SA22-7838

HTTP Server Planning, Installing, and Using, SC34-4826

z/0S V1R3.0 MVS System Management Facilities (SMF), SA22-7630
z/0S V1R2.0 MVS Workload Management Services, SA22-7619
z/0S V1R2.0 MVS Programming: Resource Recovery, SA22-7616
z/0OS Resource Measurement Facility User ’s Guide, SC33-7990
z/0OS Resource Measurement Facility Report Analysis, SC33-7991

© Copyright IBM Corp. 2003. All rights reserved. 301

» z/OS Resource Measurement Facility Performance Management Guide,
SC33-7992

Referenced Web sites

This Web site is also relevant as further information source:
» WebSphere Application Server for z/OS and OS/390 support page:

http://www-3.ibm.com/software/webservers/appserv/zos_0s390/support.html

How to get IBM Redbooks

You can order hardcopy Redbooks, as well as view, download, or search for
Redbooks at the following Web site:

ibm.com/redbooks

You can also download additional materials (code samples or diskette/CD-ROM
images) from that site.

IBM Redbooks collections

Redbooks are also available on CD-ROMSs. Click the CD-ROMs button on the
Redbooks Web site for information about all the CD-ROMSs offered, as well as
updates and formats.

302 Monitoring WebSphere Application Performance on z/OS

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www-3.ibm.com/software/webservers/appserv/zos_os390/support.html

Index

A

Activity Records 64

address space 6

All Workloads workspace 163
analyzing accounting data 54

APPL% 50, 80, 85

APPLENV 77

application activity cycle 42
Application Activity Display 254
Application Monitor 228

Application server model 11
Application trace 164
application-centric 227
application-specific data caches 115
application-specific error conditions 115
ARM 89

automated monitoring 227

Automatic Restart Manager (ARM) 89
AVG ENC 49

B

BBOC_HTTP_TRANSACTION_CLASS 36
Bean-Managed Persistence 10

Blame Technology 114

C

Candle Management Server (CMS) 161
CandleNet Portal Server (CNPS) 161
capacity planning 29

Channel Subsystem 4

Choose Server 251

CICS 115,126,170

CLASSPATH 21

component trace options 76
Configurable Monitoring Level 227
Container-Managed Persistence (CMP) 10, 97
containers 9

control region 12

CORBA 114

Coupling Facility 5, 169

CPU Activity Report 43

CPU report 40

© Copyright IBM Corp. 2003. All rights reserved.

Current Situation Values table 182
CustomerEntityBean 129, 141
Customizable security 227

D
dashboard, free-form 116
Data Archival 233
Data Collectors 228
Data Set Parameters 274
DB2 97-98
DB2 accounting data 54
DB2 accounting times 54
DB2PM 54
DBC 8
debugOut 135-136, 217, 220, 274, 277
directive files 114, 124
Dispatch Time Data Effective 45
drill-down
approach 235
methodology 227

E

ebusiness navigator tree 177
elTSO 98

EJB 114

EJB Coverage box 256

EJB Method Summary 252-253
EJB Summary 251
ejbFindBbyPrimaryKey 197
ejbFindByPrimaryKey 129
ejpFindCustomerByLastName 141, 176-178
enclave 48, 82

Enterprise Manager 116

entity bean 9

Environment Performance Agent 112
eRWW 98

Example 1 100, 140, 173, 237
Example 10 101, 134, 148, 217
Example 11 153, 220
Example 2 100

Example 3 100, 136, 181, 243
Example 4 100, 126, 188, 245
Example 5 100

303

Example 6 100, 129, 194, 253 Java

Example 7 100, 144, 200, 260 Agent 112,125
Example 8 101, 145, 207, 264 Connector Architecture (JCA) 9
Example 9 101,212, 268 DataBase Connectivity (DBC) 8
Examples 99, 126, 173 Message Service (JMS) 8
summary 101 Naming and Directory Interface (JNDI) 8
used 100 RMI 114
Transaction API (JTA) 8
F Java Virtual Machine 21
findCustomerByLastName 259 JavaBegns Activation Framework (JAF) 8
JavaMail 8
JCA 9,115,170
G JDBC 114,170
garbage collection 37 JDBC tracing 76
garbage collection (GC) 67, 186 JMS 8, 163, 170
Global Performance Management Control 43 JMSController 250
JNDI 8, 163
H JRAS tracing 76
hardware and software components 89 JSP 97, 162
Hardware Management Console (HMC) 43 JTA 8,115
HFS 168, 208, 210 JVM _
hierarchical file system (HFS) 6 garbag.e collection 186
hit rate 27 heap size 69, 166, 187
/10 114
Memory Usage 244
| profiler interface (JVMPI) 166
IBM HTTP server recommendations 32 JVM_ENABLE_VERBOSE_GC 67
IFASMFDP 58 JVM_HEAPSIZE 69
IN READY 48 JVMPI 166
In-Flight Request Search 260
instrumentation 114
instrumentation points 114 L
Interface Repository (IR) servers 15 LDAP 21
Interval Records 64 Lealf Hunter 120, 122, 138
Introscope 110 logging 134

logical partition (LPAR) 4

agents 111
g Longest Running Workloads 175

Enterprise Manager 111

Environment Performance Agent 115 LPAR 5
Explorer 141 BUSY TIME 47
Major Components 111 cluster 46
Workstation 111 LPARCE _ _
ITSO Configuration 123, 236 Capacity Estimator 46
J M
JoEE 8 managed-object framework (MOFW) 165
components 9 MAX_SRS 34
Container 10 measurement interval 41
deployment descriptor 11 memory leak 67, 69, 82, 122, 134, 136, 181, 187,
JAF 8 243

304 Monitoring WebSphere Application Performance on z/OS

message bean 10

Message Queueing (MQ) 22
MIN_SRS 34

MOFW 165

monitoring console 228, 236
MQ Series 115

MVS BUSY TIME 47

N

node 14

normal monitoring mode 114
NOT ACCOUNT time 56

o
observe the current memory usage 244
OMEGAMON XE
agents 161
architecture 158
Candle Management Server 161
CandleNet Portal Server 161
CICS 170
clients 159
DB2 170
DB2plex 170
IMSplex 170
0S/390 167
0S/390 UNIX System Services 168, 173
performance monitors 158
WebSphere Application Server 165, 173
WebSphere MQ 172, 201
OMEGAMON XE for DB2plex 200
Open System Adapter (OSA) 89

P

package 7

Page View Rate 27

paging activity 74

Parallel Sysplex 5

partition data report 40

PathWAI configuration 170

PathWAI Dashboard for WebSphere Infrastructure

170

performance
analysis 29, 42
configuration guidelines 31
expectations 28, 31,72
metrics 116

monitoring 29
Physical Management Time 44
ProbeBuilder 114
processing weights 46, 167
PRR 98
Publish Traffic 232

R
Redbooks Web site 302
Contact us xii
Remote Method Invocation - Internet Inter Orb Pro-
tocol (RMI-IIOP) 8
Report Filtering Options 272, 274
Request Detail 261
Resource Recovery System (RRS) 89
response time 26
alert 123, 125, 173
distribution 52
expectations 83
objective 37
RMF
CPU information 40
partition data report 43
Post Processor 42
reports 39, 42
RMI-IIOP 8
RRS 89, 169
RRS Attach Facility (RRSAF) 20

S
Selected Workload - History workspace 183
Selected Workload Occurrences view 184
Server and Report Type Selection 246
Server Availability Detail 244, 254
server instance 12
server region 12
Server Region address space classification 37
Server Region enclave classification 35
servlet 97
session

affinity 97

bean 10

EJB 97
SimpleFileServlet 63, 146, 207
SMEUI 15
SMF

Record Interpreter 57, 60

record type 120 63, 165

Index 305

records 39
type 120 231
Snapshot Traffic 233
Software Consistency Check 245
SSCHRT 49
stalled request alert 125
stateless EJB 98
STD DEV 50
STORAGE 52
subtask 12
summary report 40
sysplex configuration 88
Sysplex Distributor 89, 94
Sysplex Timer 5
System Administration model 15
System Management Facility (SMF) 39
System Properties 254
System Resources Overview 251, 254
Systems Management End User Interface (SMEUI)
15

T
test workloads 96
Think Time 28
thread 12
throughput 26
To evaluate the overall health of the server farm
268
Trade2 97, 163, 246, 251
transaction 27
class 36
trace mode 114
Transaction Tracer 120, 128—129
Trap and Alert Management 235, 254
Trend Report 248, 274

U
UNIX System Services 6, 98, 168
user-defined threshold 116

\")
verbose GC trace 67, 83
View Method Trace 277

w

Web container 97
WebSphere

class loaders 114
SMF Record Interpreter 57
Studio Application Monitor 226
Studio Workload Simulator 29, 98
Studio Workload Simulator (WSWS)
WebSphere Edge Server 94, 207
Whole Application View 110
WLM queues 35
Workload Activity Report 48, 85
Workload analysis 163
Workload Manager 6, 169
Workstation
Console 116
Console Editor 116
Explorer 116
WSAM
Problem Determination mode 230
Production mode 230
Profiling mode 231
WSWS 93

X

XCF 5
XML 114
XSL 114

306 Monitoring WebSphere Application Performance on z/OS

93

Monitoring WebSphere Application Performance on z/0S

Redbooks

(0.5” spine)

0.475"<->0.875"
250 <-> 459 pages

=46)

Monitoring WebSphere
Application Performance
on z/0S Redbooks

Monitor and This IBM Redbook was written for IBM zSeries users,

troubleshoot performance analysts, system administrators and system INTERNATIONAL

production engineers who need a comprehensive understanding of IBM TECHNICAL

performance of WebSphere on z/0S or 0S/390 performance management in SUPPORT

WebSphere on z/0s ©rder o ensure the successful deployment of e-business ORGANIZATION
applications.

This redbook helps you understand WebSphere Application

e e Path_NAI, Server V4.0.1 performance factors, and how you can monitor
Web..?.ph?re Stud_lo your system and application performance, response time, and BUILDING TECHNICAL
Application Monitor resource utilization. INFORMATION BASED ON
Part 1 provides a general introduction to WebSphere runtime and RRACTICAL EXRERIENCE
WebSphere on z/0S giscusses the key performance factors in a z/0S production
performance environment. Beyond general recommendations, we describe a IBM Redbooks are developed by
methodology performance troubleshooting approach. Examples are given to the IBM International Technical
explain how to narrow down to the source of the problem. Support Organization. Experts
Interpretation of data and rules of th_um_b are provided. _ gngnﬂﬂfrg%S;?gﬁ(? ﬁlr:edworl d
Part 2 expands on performance monitoring products available for create timely technical
WebSphere on z/0S that will help detect and identify information based on realistic
performance problems: scenarios. Specific
- Candle Corp. PathWAI Dashboard for WebSphere Infrastructure recommendations are provided
- IBM WebSphere Studio Application Monitor ;%ITjiilan;O#]:)TepL%n;gm (IeTy in
- Wily Technology Introscope your environment.

For each product, we describe the relevant methodology and
show, through typical real-life examples, what to look for in
determining where the performance bottleneck is.

For more information:
ibm.com/redbooks

SG24-6825-00 ISBN 0738426148

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 Walking the WebSphere performance path
	Chapter 1. WebSphere runtime on z/OS
	1.1 zSeries hardware and z/OS
	1.1.1 Central Processors and logical partitions
	1.1.2 Parallel Sysplex®
	1.1.3 Address spaces and tasks
	1.1.4 z/OS components

	1.2 The WebSphere programming model
	1.2.1 Java overview
	1.2.2 J2EE

	1.3 Application server model
	1.3.1 Regions and instances
	1.3.2 Servers and nodes

	1.4 System administration model
	1.5 Putting it together: a typical customer installation
	1.6 Performance components
	1.6.1 The TCP/IP network
	1.6.2 zSeries server
	1.6.3 z/OS
	1.6.4 The application

	Chapter 2. WebSphere and z/OS, walking the performance path
	2.1 Introduction to performance and terminology
	2.1.1 Setting your performance expectations
	2.1.2 Performance management
	2.1.3 How to know that you have a performance problem
	2.1.4 What to do about a performance problem

	2.2 Workload Manager controls
	2.3 Gathering WebSphere performance information
	2.3.1 SMF records
	2.3.2 RMF reports
	2.3.3 DB2 SMF records
	2.3.4 WebSphere SMF records
	2.3.5 Garbage Collection (GC) trace

	2.4 Establishing the diagnosis
	2.4.1 Overview
	2.4.2 Initial diagnostics
	2.4.3 Where does it hurt?
	2.4.4 Check for memory problem
	2.4.5 The delay pain
	2.4.6 The CPU pain

	Chapter 3. The ITSO test environment
	3.1 Hardware and software configuration
	3.1.1 The sysplex configuration
	3.1.2 Network access
	3.1.3 ITSO test workloads
	3.1.4 WebSphere Studio Workload Simulator

	3.2 Examples of performance problems
	3.3 Performance monitoring tools

	Part 2 WebSphere performance tools
	Chapter 4. Introscope
	4.1 Introscope
	4.1.1 Introscope major components
	4.1.2 Monitoring WebSphere on z/OS
	4.1.3 Enterprise Manager
	4.1.4 Workstation
	4.1.5 Introscope performance and monitoring methodology
	4.1.6 ITSO configuration

	4.2 Examples
	4.2.1 Example 4: CICS
	4.2.2 Example 6: No DB2 Index
	4.2.3 Example 10: Too Much Logging
	4.2.4 Example 3: Memory Leak
	4.2.5 Example 1: Identify Bad User
	4.2.6 Example 7: Transaction Hang
	4.2.7 Example 8: Static Pages
	4.2.8 Example 10: Increased WebSphere Activity
	4.2.9 Example 11: Prioritizing Problems

	Chapter 5. PathWAI solutions for WebSphere
	5.1 PathWAI solutions
	5.2 OMEGAMON XE performance monitors
	5.2.1 OMEGAMON XE architecture
	5.2.2 Monitoring WebSphere Application Server
	5.2.3 Monitoring the WebSphere environment

	5.3 PathWAI configuration at ITSO
	5.4 Analyzing the ITSO examples
	5.4.1 Example 1 - Identify a DB2 delay in the application path
	5.4.2 Example 3 - Detect a memory leak
	5.4.3 Example 4 - Identify a CICS TS response time problem
	5.4.4 Example 6 - Isolate a DB2 problem
	5.4.5 Example 7 - Transaction hang or time-out
	5.4.6 Example 8 - Static pages serving
	5.4.7 Example 9 - Increased WebSphere activity
	5.4.8 Example 10 - Identify a method called with high frequency
	5.4.9 Example 11 - Detecting multiple concurrent problems

	Chapter 6. WebSphere Studio Application Monitor
	6.1 What WebSphere Studio Application Monitor is
	6.2 How WebSphere Studio Application Monitor works
	6.2.1 WebSphere Studio Application Monitor architecture
	6.2.2 WebSphere Studio Application Monitor data collection
	6.2.3 WSAM Application Monitor
	6.2.4 WSAM Monitor Console

	6.3 Performance methodology
	6.4 ITSO configuration
	6.5 Running the examples
	6.5.1 Example 1
	6.5.2 Example 3
	6.5.3 Example 4
	6.5.4 Example 6
	6.5.5 Example 7
	6.5.6 Example 8
	6.5.7 Example 9
	6.5.8 Example 10

	Appendix A. Java and J2EE details
	A.1 Java class loading
	A.2 Java runtime execution
	A.3 Java memory and garbage collection
	A.4 J2EE application flow
	A.5 J2EE application structure

	Appendix B. Configuration files
	B.1 HTTP Server definitions
	B.2 z/OS TCP/IP definitions

	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Index
	Back cover

